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Reading this thesis

The paper in your hands began as a primer for ARLO users, but with time it has -- much like ARLO
itself - grown. mutated. and gone through rearrangements. The bulk of this paper discusses representation
language languages in general, and the detailed implementation of ARLO in particular. These discussions are
followed by two examples presenting ARLO as both a system-building tool and as a framework for building
auto-analytical systems,

The first chapter presents motivations for representing representations, and makes some first steps
towards generally characterizing what 1= meant technically (as opposed to philosophically) - in the Al

"

community by “representation.” It then introduces ARLO as a language for representing representation
languages. The chapter closes with a scenario of a new user being slowly introduced to ARLO’s functionality,
features, and faclities.

The second chapter steps behind the scenes to talk about ARLO’s internal construction, detailing how
the mechanisms of the preceding scenario actually operate.

The third and fourth chapters of the thesis portray ARLO in two different roles. In the third chapter,
a toy language for describing people and their interrelations is implemented; this Janguage is then used to
describe the members of an imaginary research lab. This embedded language and database is then examined
and extended in an anunotated script of a user’s interaction with the system. This script Hlustrates ARLO's
facilities for accessing. modifying, and extending its representations.

The fourth chapter presents an example of tools which examine representations and descriptions de-
veloped in ARLO or its extensions. It describes an ezplanation system which takes a collection of ARLO
structures —- describing either some domain, some representation language, or both — and produces an en-
glish description of the structures. The focus and organization of this description is generated from general
properties of its topical structures extracted for the structures themselves. The explanation mechanism is
then applied — as a demonstration — to automatically generate a description of the in-core implementation
of the previous example (the laboratory database).

Finally, in the appendices, this explanation mechanism is applied to both itself (the explanation system)
and the core of ARLO’s default configuration.

vii
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Chapter 1
ARLO: Representing Representations

In Hof80.. Hofstader makes the sweeping claim that A/ advances are language advances. While this is
certainly too broad a generalization, it has a hefty component of truth: we develop languages which reflect
our developing theories so that we may actually bring those theories to the touchstone of implementation.
As our proposals and theories advance and change, so do the languages — the abstractions and primitives —
used to implement them. If we are really engaged in ezperimental epistemology, as some have characterized
Al, then the languages and representations we develop are the burners, flasks, lasers, and spectrographs of
our experimental laboratory.

But what precisely is an “Al language”? What distinguishes an Al language from a conventional pro-
gramming language used to write intelligent programs? One distinction we might draw is that Al languages
are languages embodying some theory of Al programs. The facilities which an Al language provides generally
grew from observation of the sorts of things which Al programs — written in either conventional languages
or other Al languages — tend to do: pattern matching, heuristic search, property inheritance. etc. A given
Al language combines a collection of these extracted primitives with a few organizational principles — mo-
tivated both theoretically and technically — to provide a framework in which writing intelligent programs
- encoding human knowledge and expertise — is easier and more elegant.

Yet in a deeper sense. an Al language does not merely provide a framework for expressing knowledge
and expertize in convenient ways: it implicitly embodies some knowledge itself. The knowledge it embodies
is the ontological foundation upon which programs or systems in it build: properties inherit in this way.
two things are similar {match) by this criterion, logical inferences are invalidated when this happens. and
so forth. In this sense. a given Al language is an Al program itself. embodying a particular tlicory of how
a particular part of the world works. It's just that, in the case of representation languages. the parts of
the world captured are techniques for representation and reasonming. But if an Al tanguage i~ itself an Al
programe mizht we build a fanzuage whose “damain™ i< these Al languages?
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This paper describes ARLO, a representation language language which describes and implements
representation languages, including ttself. Descriptions of languages in ARLO are compiled into implementa-
tions, so that describing a given language in ARLO — n a sufficiently precise way -- generates a reasonably
efhcient implementation of the language as well as a manipulable description of its semantics and behaviour.

The first RLL (representation language language) was developed at Stanford by Greiner and Lenat
‘Gre80). Their implementation was dubbed RLL-1, and a version of it iz used in Lenat’s automated discovery
program, Eurisko[Lens3]. Eurisko uses an accumulated body of heuristics to guide the mutative evolution of
representations and heuristics for various domains. A reflerive Al language — able to talk about and modify
itself and languages embedded in it — is ideal for this sort of evolutionary development of concepts and
expertise. ARLO was originally conceived as a Common Lisp [Ste&4) version of the RLL-1, but has diverged
from it in several important directions.

1.1 What Good is Representing Representations?

Why do we need — or want — a language for describing representation languages? Our programming
languages already procedurally describe the representational mechanisms we use. What is the point of
having an intermediate language for describing those mechanisms?

An answer to this challenge may be revealed by describing what an RLL offers two distinct classes of
users: the expert-systems developer and the Al researcher. To the expert systems programmer tailoring
a representation for some understood domain, an RLL provides systems programming tools for developing
a system’s representational paradigms and primitives. To the Al researcher building a program whose
understanding of its domain evolves through exploration and inner cogitation, an RLL makes a program’s
understanding of a domain into a manipulable stuff which the program itself can access.

1.1.1 RLL’s as implementation languages

The tools which an RLL gives the implementor of an expert system are primarily system programming tools—
tools which make the task of developing and debugging a given representation for a particular domain both
faster and easier. The features that make an RLL a powerful development environment for expert reasoning
systems are largely the same features that make modern LISP systems ideal for fast prototyping of any sort
of complicated systemi. LISP is a powerful development environment because (among other factors):

e Programs and data are uniformly represented; the same tools used to describe and modify programs
can be used to describe and modify data structures.

e Embedded Languages — building on LISP’s data and program structures — can take advantage of
already existing facilities of the LISP environment.

e  The language can be dynamically and incrementally extended, as experiments with the implementational
or theoretical feasibility of new ideas fail or succeed.

An RLL provides these same sort of features for higher level representational constructs:

e  The description of a representation iz accessible via the same mechanisms (in ARLO’s case the ac-

cessing or modification of values in slots on structures) as the representation itself; indeed, these same
mechanism- can be used to accesz and modify ARLO s description of the language ARLO!
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e e  Tools built for describing, examining, or massaging a given representation can be easily generalized to

other representations. System tools -— used for describing, defining, and modifying representations —
A ‘-‘ can be just as easily applied to the structures of the representation as to the representation itself.
S o  The definition of a representation -— since it is stored as a mutable representation itself — can be

"G dynamically modified. An RLL can — and ARLO generally does — perform the appropriate bookeeping
i :\ to diminish unfortunate or fatal repercussions of such changes, while still supporting the intent of the
e change.

g The implementation of a given representation or program takes a high level task or goal and reduces it to
_:‘ separately implementable parts. An RLL provides a tool kit and supply closet of such parts, where the
X interchangability of its representational components makes mechanism or experience from one application
::‘ \ transportable to another.

v 1.1.2 RLL’s as Mediums for Programs Which Grow
':‘.. To the researcher developing intelligent systems which grow and learn by themselves, an RLL offers a way to

3 let a program examine and extend its representation and understanding of a domain. The same properties
Y 2 of an RLL which support design efforts of human expert system programmers make simpler the design of

3 mechanical expert system programmers which design and debug both other systems and themselves. While an
RLL does not neccessarily embody any fundamentally new learning or problem solving technology, it does

Vol provide a framework for describing such techuologies generically and reflectively (so that any sufficiently
4':: general mechanism can be effectively applied to its own description).

:f For any level in an RLL-based system — described problem, specified language, or the RLL itself —

%‘_\: the same mechanisms for accessing and modifying its description are available. Due to this homogeneity of

' representation, faculties and tools built to operate on a given level may be applicable to other levels in the
system as well. Lenat’s Eurisko {Len83] system applies the discovery mechanism pioneered in AM |Len8?2]

-;.- to such diverse domains as three dimensional VLSI design, space gaming fleet design, and number theory.
.(-": But since the discovery mechanism — largely a collection of eclectic generation heuristics — operates in

b_ and is described in an RLL, it can be applied to itself, improving its behaviour with the accumulation of
! t: “experience” and examples in the application of heuristics.!

' Analytic and descriptive tools developed in an RLL can generate summaries and descriptions of im-
o plemented or evolved systems which are useful to both human and mechanical programmers modifying or
:*' extending them. Further. since developments in the RLL are generally extensions or modifications of exist-
&. ing structure, descriptive and manipulative mechanisms and metaphors may be automatically extended to
i new apphcations in new domains. For instance, the grammar and dictionary of a natural language interface
X might be automatically extended to cover newly developed or assimilated concepts or relations, growing by

extensions based on those concept’s derived semantics. Such an extensible language interface would explain
:.’r newly constructed or proposed concepts by using terms and grammatical forms extracted from the com-
‘-:;.: ponents which the concepts were developed from. In the same manner, the operations and presentations

:::': —I] e it
=3 nfortune |ffl) E\m ko's experience is primarily embodied in the numeric worths assigned to its synthesized 1

{_. a priort heuristics. We might wish for a more symbolic description of the systems failures and successes us the
_ Busis for this reflective nuedification.
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ii'zg offered by a graphical interface might be automatically extended to concepts and relations barely anticipated 1
) in the interface’s conception. The interpretation of what some generic operation (characterized perhaps by a
',;t; particular gesture or vocalization to the interface) on an object should do may be derived from the system’s
oy description of it and of that description’s underlying semantics. An interface which represents what it is
" P y p
interfacing to regularizes the user’s access to a changing program, making the implementation and debugging
::::' of self-developing systems — programs which grow — an easier task. :
oty
1.2 Representation as Inference
q‘| Before leaping into the question of how representations may be represented, we may wish to characterize
.‘ exactly what we mean by representation. While we probably won’t find — and perhaps don’t desire — a
e:,“ complete definition, we would like some sort of intuitive grasp of what an RLL should — and shouldn’t —
e try to represent. This section presents a characterization of representation as a special sort of inference, and
briefly treats the consequences of this characterization.
o
i) 1.2.1 Spontaneous and Deliberated Inference
&
:. In the beginning of this chapter, we slipped from describing Al programs to describing representation lan-
» . . . . . .
::‘Q: guages. But it would be hopelessly naive to claim that an Al program is merely its representation; what
L) .
issues have we glossed over in sharpening. of our focus to representation? Which part of what Al programs
7 do is representation and which parts are something else?
}.: Many, and perhaps most, of the actions of an Al program actively solving problems or operating in
> some particular domain (including itself) can be classed as t1nferences connecting one partial description of
N P g g one p P
.:-‘ the world to an extension of that description. Such inferential actions further seem to fall into fairly distinct
£ classes: spontaneous inferences and deliberated inferences. Spontaneous inferences are the sorts of
inferences generally described with terms like inheritance or defaulting, while deliberated inferences are those
) inferences to which we apply terms like hypothesis or counterezample. This distinction between spontaneous
and deliberated inference is one made by nearly all Al programs, but is it merely an implementational
ve . . . . . . . I3 .
Ns distinction, or is there a deeper semantic motivation behind it?
08 Certainly there is no such distinction implicit in the product of such inferences; spontaiieous and delib-
‘ P p p
erated in‘erences seem to share an identical character of belief or rational integration. The difference instead
o lies in the act of inference itself, in the character of the action by which we extend our representations of
S p
:4 the world. If we chiaracterize inferences as mental actions, spontaneous inferences might be looked at as the
,S bas1c actions of a rational agent making inferences. This introspective notion places a psychological, rather
"\,‘ than semantic. motivation behind the distinction between spontaneous and deliberated inferences. While
-
L a formal analysis of any given inference system may best treat the two sorts of inference identically. any
s implementation or psychological theory must retain the division.
13 ..
,.:"" 1.2.2 Characterizing Spontaneous Inference
*\Q . . L . L
) Are there other characteristics —- besides the intuitive and psychological characterizations presented above
a. -- for the distinuction between spontaneous and deliberated inferences? One important clarification is that
the distinction is not identical to the paychological distinction hetween conscions and unconscious mental
",
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activities. Conscious and unconscious activities each involve both sorts of inference; conscious reasoning
might be those deliberated inferences which are verbalizable, but even this may be going too far. In any

g:: event, spontaneous inference is aot psychologically subconscious activity; the knowledge that Clyde the
; elephant is gray, while a spontaneous inference, is certainly not a “subconscious” inference.
': ' One distinction which we might make between these two sorts of inference is that spontanecus inference
.:" never builds large mental structures. If we believe that there are aggregated collections of ideas in the mind
) —— structures — then spontaneous inferences may complete, fullfill, or verify these structures, but will never
K construct them ez nihilo. Deliberated inference, on the other hand, has no such restriction; indeed, a large
i:l part of its operation is the construction of just such loci of assumption and assertion,
‘: Our names for the two sorts of inferences suggest another distinction which we should clarify. The ad-
[ jective spontaneous suggests that such inferences happen quickly, while deliberated suggests a more extended
¢ process. While this is largely the intuition intended, we need to make clear when this inferential interval
. actually occurs. Both spontaneous and deliberated inferences occur on demand; this demand may be of
| physical neccessity or psychological intention, but the terms spontaneous and deliberated characterize these
e inferences as actions carried out on demand, rather than as valid possibilities of action in a represented world.
4‘\' Spontaneous — in our usage — does not mean that when I tell you Clyde is an Elephant you automatically
X infer that he is gray. It does mean that if | =sk you what color Clyde is you can tell me quickly, without
needing to go through any complicated intellectual machinations.
- 1.2.3 The Evolution of Spontaneous Inferences

I

Does deliberated inference become spontaneous over time? ls the distinction the same as the mechanomorphic
distinction proposed between “compiled” and “interpreted” knowledge? Without a more precise definition
of such “compilation”, it is hard to decide this latter question one way or another, but I suspect the answer
will be no. The process of compilation — as generally described in modern computer science — allows

3
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,. . . -
oS programs to run faster by removing general character and making assumptions of context and reference.
%, . . . .
.) Spontaneous inference does not rest on local assumptions of context or reference, as its execution may reach
S across expanses of representation and structure. Taking the point about mental structures offered above,
W) P
0 spontaneous inferences are “fast” because they do not need to generate or access intermediate structure
created on the fly.
:'.; On the other hand. the answer to the first question above — about deliberated inference becoming
s spontaneous — 1s probably athrmmative. The way deliberated inference becomes spontaneous involves the
) -: change of representation; deliberated inference in new domains works with structures formally representing
o the domain and its principles — the manipulative principles of algebra or the force-motion axioms of hitting
] . . . T . P .
AL baseballs; with time, however, the representation for the problem becomes specialized. as individual objects
and subproblems are placed in broad and powerful classes. It s by this process that deliberated inference
[\ . . . . .
y — referring to objects and general rules — becomse spontaneous inference — referring to properties and
: particular paradigms.
o Finally returning to the topic at hand, an RLL i a lanaguage for describing and implementing spon-
a taneous inference systems. The classification of inferences as spontanecus does not exempt them from the
restrictions we typically place on inferences. We still can demand consistency. accountability. and rohust
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non-monotonicity. As such it must offer facilities for maintaining what we demand from inferences with a
minumum cost in their execution.

1.3 What is ARLO?

As suggested in the previous sections, ARLO embodies a theory of how representation languages work.
But like any theory tied to an implementation, ARLO’s carries its baggage of prejudices, leanings, and
restrictions. Most obviously, ARLO is prejudiced by an initial configuration as a frame-based language.
As initially configured, ARLO is a language for constructing data-structures — objects with properties —
which describe the operation and performance of other representation languages also based largely on data-
structures. In turn, ARLO is itself described by its own data-structures and this description is referred to in
compiling and interpreting the descriptions of representations described in ARLO. ARLO’s compilation and
description of a given representation references the in-core structures which define ARLO itself, rather than
being hardwired as LISP procedures. In compiling a given representation, ARLO is partially interpreting
its own description of itself.

How can such a self-referential interpretation process ever run efficiently? ARLO compiles the repre-
sentations it describes — including itself — into LISP code cached in quickly accessible locations in the
language’s description. This caching of values allows ARLO and representations described in it to run effi-
ciently once compiled. A value dependency mechanism? assures the accuracy of ARLO’s cached compilations
by updating or retracting them when the descriptions from which they were compiled are changed. Because
of this bookkeeping, representations described in ARLO — including ARLO itself — can be dynamically
modified with relative impunity.

Greiner and Lenat’s RLL-1 is cast as a representational “organ.” whose stops and settings can be
modified by a performer or user, mutating RLL-1 into a language with some set of particularly desired
features. ARLO, while supporting this sort of fundamental mutation by providing access to its representation
of itself, is primarily designed to support ertension into new representational paradigms, without supplanting
its hasic core. Instead of an organ, ARLO might better be perceived as a factory of synthesizer components

AT 7]
e

“
3

and patches, from which a user constructs whatever representational tools or paradigms she will.

,.
=%

The ability to mutate ARLO and languages described in it means that, in sonie ultimate sense, ARLO
is not really restricted by its intial configuration: ARLO could be used to define another RLL hased on
aszertions rather than frame-like data-structures. Such a representation, however, might not be acceptably
efhicient because of the way ARLO compiles its descriptions: the way a frame system is compiled and

optimized is very different from the way an assertion bazed language would be compiled and optimized.
ARLO could be radically mutated to do such optimizations, but I certainly don’t claim to have done this,
and in some strong sense such an accomplishment would be a wholly different language.

2A value dependency mechanisi i< o generalization f propositional dependency mechnisms like Doyt or 'McATs .
It keeps track of what elements of the environment o given environmental side effect depends v, updating ¢
undoing that side effect when those elements are chunged. A prepositional TMS is o speciulized sort of value de-

pendency system which perfors this maintenance fanction ~ver just the trth values - f nies cand propesiti ns,
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1.4 Basic Concepts: A User’s Introduction 1

ARLO is a frame based language.

A new user approaching ARLO in its initial configuration finds a classical “frame based” language much like
FRL [RG77) or UNITS {Ste79]. In this language, she may create, examine and manipulate data structures —
called units — which possess properties — called slots — to which are attached values — which are lisp
objects of various sorts. Each ARLO unit has a unique name relative to some knowledge base (a namespace
grouping many related units together}), and its slots map symbolic names — each again relative to some
particular knowledge base — to single values. As in other frame based languages, the value of a slot is
sometimes computed on demand; a slot’s attempted retrieval may compute a value (a default) for the slot if
one is not already available.

Defaulted values are cached and justified.

When the value of a slot of some ARLO unit is defaulted, the newly computed default is saved — cached
— on the unit itself. This caching allows subsequent references to the slot to return a value immediately,
without having to recompute a default value. Each of these cached values also records the justifications of
its derivation: the function used to compute it and the slots referenced in its computation. When the user
later changes one of these supporting justifications, she finds that the cached default — typically listed when
the unit is described to her — disappears. When she asks again for its value, a new up-to-date default is
computed, and once more cached on the unit. The justifications of each of these defaulted slots are explicitly
available to the user: when she asks for a description of some particular slot’s value, its justifications are
listed along with the description of its value.

Different slots have different semantics.

From the justifications ascribed to various slots. our user discovers that different slots derive their defaults in
different ways. For instance, she finds that the Telephone-!lumber slot of a person-description defaults through
its Organization slot, while the description’s Home-Address slot defaults through the Spouse-Equivalent slot
attached to it. Further, in the process of creating and modifying various units. she finds that certain slots
will accept only certain types of values and will attach to only certain kinds of units. The Supervisor slot of a
person-description - for instance - accepts only other person-descriptions (determined by some inheritance
criterion in zome hierarchy) for its values and attachments ¥ When zhe accesses ARLOs descriptions directly
from LISP (using a small repetoire of top level functions for accessing and storing values in slotz) the user
discovers that the way in which slot values are printed and described also varies from slot to slot: a Birthdate
slot may store its value a~ a number i seconds since 1900, but this value i always printed out in a more
human-palatable form. Different <lots in ARLO. she concludes, hove different semantics: different sensible
values and attachments, different mechams=m=< for detaulting, different methods for describing their values.

etc.

These semantics are explicitly described in ARLO.

3The attachment of & slot iz the unmtl it attaches st vaine © F ¢ the Home Address =1t § ti nnit Kris-Kringle. its
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:!w When at some point our user wishes to know more about the semantics of a particular slot, ARLO reveals
’ its accessible underside. To get a description of a particular sort of slot, she need only examine an ARLO
:l:; unit describing the slot to see a summary of its intentions, mechanisms, and restrictions as specified by its
":t": human or mechanical implementor. Each slot :n ARLO, she discovers, s described by an ARLO unit. For
: example, if she wants to use a “color” slot defined by some other user, she can describe the the slot-defining
: . unit named COLOR to see itz complete specification. This COLOR unit details many aspects of the “color” slot:
W what types of objects can be stored as colors, which sorts of units may have colors attached to them, how a
e color should be described to a user or even precompiled problem solving “cliches” for discovering or changing
,;J", the color of an object.
'::'n Modifying this description can alter the semantics of the language. ‘
:". ' But these descriptions are not merely one-way windows on the semantics of the language; if the user is
dissatisfied with some part of the definition of the slot, she can modify the ARLO unit describing it and that
R _ its semantics have changed. For instance, having the definition of the color slot “in hand,” she can extend or
,‘:,‘ modify different aspects of its semantics — such as how it is defaulted, restricted, or described — by using
L™ established and familiar functions and utilities for modifying ARLO units.
;‘! ARLO represents implementation as well as semantics.
= The ARLO description of a slot specifies not only its semantics — its restrictions and assumptions — it
o also specifies its implementation. Since the methods for storing or fetching the value of a slot are explicitly
‘:J: described in ARLO, different slots may be implemented in different ways. For instance, some slots might
-':, store their values in a high speed “connection memory” [Hil85], while others might store their contents on
:‘53 a shared storage device across a local network. While the initial ARLO configuration uses only immediate
i storage techniques {storing values directly on the unit data structure), this in no way limits its ultimate u
o configuration or organization.
:-_:ﬁ: ARLO also represents its own semantics and implementation.
::;' ARLO represents not only other representation systems, it also represents itself. The slots and units used to
'a-’ describe the semantics of a given representation are themselves described in ARLO. This means that the unit
describing the To-Verify-Type slot 4 has a To-Verafy-Type slot which is referred to whenever a To-Verify-Type
[ . property is defined for a slot.
:'J; ARLO’s self-representation is made possible by an elaborate and circumventive bootstrapping process
:. that occurs when it is compiled and loaded. 1n this process, slot-describing slots - such as To-Get-Value
Mo, or To-Verify-Type — are defined as units with preemptively stored To-Get-Value or To-Verify-Type slots
' referenced by run-time ARLO. ARLO’s bootstrapping process sneaks around the self-referential interpre-
tation mechanism to prepare a pre-compiled runtime environment which refers to itself in compiling and
5 ﬁ mterpreting other representation languages, including the remainder of itself.
:P":o The ability of ARLO to easily modify itsell allows introspective activities like self-modification, self-
8 T
1;'* 4The To-Verify-Type slot stures the functicn which a slot uses to determine if a given value and attached unit are
wcceptable.
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g documentation,’ or self-explanation to be performed with ARLO structures. Not only may a program
written in ARLO examine or modify its own representation language, it may examine, extend, and modify
a¥e (within limits) the language in which that representation language is described.

SFor instance, the dncument(mr-n in the appendices was produced by ARLO examining and describing its own

description.
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Chapter 2
ARLO’s Implementation
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’Q::p:_i v Most Al languages are implementation towers; it is popular to diagram the construction of a given Al pro-
'!!:::,' gram as a tiered construction of implementation layers resting on a fouiidation of vanilla LISP. (Occasionaly
e some clever wag also sketches in the machine language, microcode, logic circuitry, and semiconductor physics
L beneath this LISP foundation.) Figure 2-1 is such a diagram for ARLO’s construction, illustrating the foun-
16 dational role each level plays in the next. This chapter describes these components of ARLO’s implementation
: and the boostrapping process which consolidates them into a working self-referential implementation.
‘.-“‘t
S Embedded  Languages
(i':; Y Interface
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Y Coders
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:of‘.o Figure 2-1. The Lavered Implementaticn f ARLO
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But Figure 2-1 i not quite the typical “layers of implementation” diagram. its details offer more conrent tha
simply illustrating levels of embedded languages. The horizontal arrows on the hgure indicure twe nuporane
phases of ARLO’s deployment; each corresponds to the boostrapping of some component of ARTO - et
representation. The first bootstrap is the definition of ARLO as a representation detmng lanyuee Tt
second boostrap is the completion of ARLO'’s type restriction system, which constrams the sabue and
attachments of various slots.

As intimated above, a language implemented in ARLO remains reazonably ethcent by caching it < an-
piled implementation on quickly accessible properties of its description. We might view this compalacia
process as pushing ARLO’s execution down the tower of Figure 2-1. While a given representation 1= e
scribed at the level just above ARLO’s definition, it is implemented and executed at the more efhoient levels
below it.

The tower in Figure 2-1 has 11 distinct components, each of which plays a foundational role 1w the
components above it:

1. The LISP underpinning
ARLO is implemented in LISP Machine LISP {WMB&82: for a variety of special purpose LISP Muachines
The version of ARLO described here is ARLO Version 25.30. running in Symbolics Release 52 ARLO
uses a variety of facilities developed for the LISP Machine, providing (among other capacitie-) special
capabilities for formatted output and “impatient i/0”.

2. UNITS: A Data Structure Facility
LISP is used to implement a data-structure facility for creating and accessing named objects with named
properties. These structures — called units after RLL — are implemented as fixed-length hash tables
which pair symbolic names to single values (which may of course describe sets of values). The names
of units and slots are organized by a namespace system which divides units into knowledge bases;
particularly, a knowledge base provides a many-to-one mapping from symbolic names to unit structures.

3. The Value Dependency Mechanism
Also implemented in LISP — or precisely, in Lisp Machine flavors — is a value dependency mechanism
for keeping track of dependencies between various properties and bindings of the LISP environment,
particularly the values assigned to the slots of ARLO units. This mechanism i: used by a deployed
ARLO to keep track of its changing defaults as well as its changing semantic definition. The value
dependency mechanism is described in Section 2.2.

4. The Error Facility
No large system is perfectly bug-free, and ARLO’s self-referential implementation makes catching and
dealing with its internal problems a tricky task. Tracking and repairing an internal ARLO bug iz often
like trying to climb out of a sand pit; each exploratory modification may shift or shatter the foundations
beneatl you. Despite this, ARLO retains a degree of robustness through two mechanisms: the first is
the value dependency mechanism which ensures that changes in mechanisms described in ARLO from
component to component in the implementation; the second i= a rich taxonomy of errors and conditions
which are signalled when ARLO detects izelf going wrong. These errors describe conditions such a:
obviously fatal recursions, type conflicts, or violations of bootstrap requirements. ARLO s facihities for
handhing and signalling these unusual conditions i described i Section 2.5,
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K 5. Reflexive Operators
— ARLO’s self-reference is centrally embodied in a mechanism called reflezive operators. Reflexive oper-
- ators refer to ARLO unit structure to determine how to operate on and access other unit structures.
N When the description of an embedded language {or of ARLO itself) is compiled, it is assembled into a
. set of units whose interpretation by reflexive operators fullfills the intended semantics of the langauge’s
-, description. Reflexive operators are an interpreter for frame like data-structure languages; the ARLO
) language itself (interpreted by these mechanisms) is a compiler for turning high level representation
. descriptions into structures for this interpretation process.
- 6. ARLO’s Definition
:'_ These are the units which define ARLO’s core, specifying a language — interpreted by reflexive operators
S — which describes how the slots of a frame-based representation language default, restrict, and describe.
The detail of Figure 2-1 illustrates how the definition of these central units, skirting ARLO’s self-reference
mechanism, extends below the level of reflexive operators at ARLO’s first boostrap. The essentials of
S ARLO’s definition — how it describes and defines the slots of various representations — are documented
1 : in Section 2.5.
" 7. The ARLO coder
-.. ARLO’s ability to define representation languages is used immediately in implementing ARLO’s coder
- mechanism, specifying a language for describing the implementation of LISP functions. ARLO’s coders
- expand partial descriptions of common representation functions (inheritance, composition, type restric-
- tion, etc) into completely specified LISP implementations. These tools for function-building are detailed
:' in Section 2.6.
- 8. The TYPE system
4 On top of the coder mechanism, ARLO’s type system is implemented. The type system implements
. a non-excepting generalization hierarchy for predicates; these are used to specify restrictions on the
attachments and values of slots defined in ARLO. ARLO’s own initial description (which is used to
. implement this hierarchy of types) refers to the type system by referencing the names of particular
.r: types. The bootstrapping of the type system (the second dotted line on Figure 2-1) maps over every
. unit in ARLO’s description of itself and replaces all of its symbolic type names with now-assembled
type descriptions. ARLO's utility package extends the type system into a class system for organizing
™ units into overlapping description categories to which particular methods and heuristics are attached.
:; The basic form of the type system is detailed in Section 2.7.
> 9. Archives and Layers
'ty A representation language language allows a complicated program and representation to be extended (or
* to extend itself) over time: but if the program must be rebooted and restarted each morning. its scope is
: limited by its short lifetime. Archives and lavers are a mechanism for whelly and incrementally dumping
j ARLO representations and descriptions. The knowledge of a sophisticated program is a dynamic and
: interconnected network of descriptions: archives and layers are tools for preserving those networks be-
-3 tween sessions and even (if any projects are sharing particular representational tools) between damains
i The implementation of archives and layers is documented in Section 2.3.
10). The User Interface
o
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i '
;' In the previous chapter, one of our arguments for the utility of RLLs was the expressive flexibility they )
‘ might bring to a user interface. ARLO’s user interface explicitly accesses and refers to the semantic

A description of the descriptions it is presenting, offering different displays and options based on the under-
5o lying definition of what it is describing. ARLO’s interface — operating through a variety of “interface
B L-:j modes” — determines its presentations and presumptions by its own description of the concepts and

‘::4 relations it 1s presenting.
K 11. Embedded Languages

. Languages embedded in ARLO are finally built on the top of this edifice. taking advantage of the

e descriptive and debugging facilities beneath them. Many representations built in ARLO (including

‘.j extensions of ARLO itself) do not build very high over the mechanisms which ARLO natively uses to

“;"- describe representation languages. These mechanisms — simple property inheritance, single hierarchy N
%‘e type restrictions, etc — may be all a user needs for her application; but on the other hand, she may

eastly implement more complicated representational constructs and abstractions at need.

v

o 2.1 Units and Knowledge Bases ]
g Units are LISP structures which map named properties to LISP objects. Implemented as fixed length hash d
: ~ tables, they can be thought of as a fast implementation of property lists. The implementation of unitz imposes i

i no semantic restrictions on what may be represented, outside of presuming that their exist objects with named
e properties. The semantics of ARLO comes from the interpretation of descriptions constructed from these ‘
"h units, much as the semantics of LISP comes — in a sometimes illusory sense — from the interpretation of list y
x:‘_' structures. ARLO’s units — like LISP’s global function and variable definitions — are more or less global

-- definitions, but they are organized into many separate distinct knowledge bases.

'-': Each ARLO unit has a name and is attached to a particular knowledge base, which is a structure

containing a collection of related units.® Within this knowledge base, the unit’s name is unique, though i

047 may possess other aliases in the same or different knowledge bases. To support this, each knowledge base

‘:~ provides a many to one mapping from names to units; but for each unit, one of these mappings is it’s unique

- true-name used (by default} in printing and archiving it.

‘:: A unit’s printed representation looks like this:

{#>EXPLAI: SUB-DIVISIO:S} .

o where SUB-DIVISIOUS is the name of a unit in the EXPLATYI knowledge base. A user refers to a unit in a given

\:‘ knowledge base by using the lisp reader macro “#>”. For example, the expression {#>EYPLAI! SUB-DIVISIOIS)

>~ refers to the unit whose printed representation appeared ahove.

‘h: ARLO’s knowledge bases are arranged in a hierarchy from the roat CORE kuowledge hase. as pictured

- in Figure 2-2. All units defined in a knowledge base are also defined in the knowledge bases below it. For

instance, every knowledge base contains the units of the CORE knowledge base: similariv, all of the units
s defined in the EXPLAI: knowledge base will be defined in the THESIS knowledge base beneath it. Kuowledge

RN bases are a namespace mechanism and not a real “representational context”™ mechanizm; user code cannot

N . . .

o eazily refer 1o “X in the current context,” but only to “X in the EXPLAIN context”

-~ A ’
" ." V_' - N . . v
' “Krnowledge buses are implemented on top of the Commen LISP package system, o facility for maintaining nimiti-
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Figure 2-2. ARLO’s knowledge bases are organized into a hierarchy of name inheritance.

2.2 The Value Dependency Mechanism

ARLO’s slots are interconnected with a value dependency mechanism. When the value of a slot is defaulted
and cached, a dependency-record for the value is created referring to the dependency records of the values
accessed in computing the cached default. Each of these referenced dependency records is also given an
inverse pointer to the newly created dependency record. Later, if one of these referenced dependencies — an
“assumption” the cached default depends on — is invalidated, the dependency record for the cached value
is also invalidated. This invalidation decaches the out of date default, removing it from the unit structure
on which it was cached. The next attempt to access the value will then — in the absence of a cached value
— be forced to recompute a valid value for the slot.
The tracking of a slot’s dependencies is quite simple. When a slot is being defaulted. the global variable
SLOT-BEI!G-DEFAULTED is bound to a dependency record for the slot being defaulted. Every slot access
occuring during the computation of this default calls the form:

(ASSUMING wunit slot)

to make the dependency record kept in - SLOT-BEIiIG-DEFAULTED dependent on the current slotof untt. This de-
pendency tracking may be disabled by the macro form AS-A-SIDE-EFFECT, which binds SLOT-BEI:G-DEFAULTED
to I'IL for the dynamic scope of its body, thus protecting any default computations in progress from depen-
dence on slots accessed in execution of its body. In addition, the call to ASSUMIIG i part of each slot’s
description, so individual slots might be defined to not reference the dependency creating form.
Dependency records for slots are stored in a non-reflective network (i.e. simply as named properties of
unit structures) defined in special knowledge bases associated with the knowledge base of the slot’s whase
vidues they describe. For instance, the dependencies for the #>CORE: To-Default-Value slot are stored on

14

Sate, "
-

Ta.Tn,

ToR

T T A
&!\ b “5-5"." P!




ARLO Ken Haase

the #>CORE-DEPE!DE!/CIES : To-Default-Value property (not slot) 7 of the unit whose #>CORE: To-Default-

Value siot they describe. A given slot’s dependency record may be accessed by the form:
(get-dependency-record wunit slot)

which gets the dependency record describing the current value of unit’s slot. These dependency records are
implemented as flavor mstances Can83) which accept niessages defining an invalidation, justification, and
description protocol.

2.2.1 Dependency Mechanism Protocols

ARLO’s value dependency mechanism uses the message passing facility of flavors 1o define a protocol for
the propogation of slot-value invalidation. In addition to this role, other protocols define ways of recording
Justifications (which may later lead to invalidations) and documenting or describing the supports of an
assumed or deposited value. These protocols, however, never refer to slots or units in particular and is easily
extended beyond this; while most of the nodes in the dependency network describe the values of slots, many
do not. Some, for instance, describe value or function bindings in the LISP environment; others play critical
roles in the presentation — to the user — of the slot network.

In particular, several graphical interfaces to ARLO have the visual presentations of ARLO slot bindyugs
“wired into” the dependency network running between slots: the appearance of a given presentation in the
mterface then changes with the validity of the slot value it represents. The graphical representation a
flavor object - - is defined to handle the invalidation protocol for dependency records and then connected
into the active dependency network just like any other node.

The invalidation and justification protocol is defined by six messages which are sent to and passed among
nodes in the dependency network:

. InVALIDATE-SELF invalidates a given dependency record and the dependency records which depend on
it. This is generally sent by an outside function. rather than from one dependency record to another.
RETRACT -DEPENDENTS invalidates the dependents of a given depeudency record. It does this by sending
all of its dependents a SUPPORT-RETRACTED message (with itself as an argument), normally causing the
dependent value to be undone and spinning off another wave of SUPPORT-RETRACTED messages.
SUPPORT-RETRACTED is sent to a dependency record when one of the dependency records it depends on is
mvalidated The response of a dependency record to this mezsage will typically go and alter the value
or assignment to which the dependency record refers. {This in turn will typically invalidate the node
receiving the message. and spin off new RETRACT-DEPE:!DELTS and SUPPORT-RETRACTED messages.)
ADD-DEPE!DE!T adds a dependency record (its single argument) to the records depended on by the record
thiz message 13 sent to.
REOVE-DEPEIDEIT remaoves a dependency record (its single argument) from the records depended on by
the record this message 1= sent to.

Pttt

REPLACE-SELF replaces the dependency record it i zeut to with a new dependency record (its single

v e e

argument). I order to side effect itz valne, the dependency record which receives this message should

AN

know where the value 1t refers toas stored.
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My Dependency records also support a collection of messages for debugging and explanation of the values they

represent. There are four basic messages for describing dependency records:

(]
i . . - . .
e e  DESCRIBE-CONTENT describes the value its record represents. This is used by all the descripton functions.
-}‘: This description is sent to the stream which is the messages single argument.
e . -
.',‘. . DESCRIBE-HISTORY describes the record it is sent to, as well as the record that record replaced, thus
o+

producing a history of the value the dependency describes. It takes a stream as a single argument, as
ek above.

U

5:"1 ‘ e  DESCRIBE-DEPENDENTS describes the other dependency records which depend on this dependency record.

.:, It takes a stream as a single argument, as above.

:::::: e  DESCRIBE-JUSTIFICATION describes where this value came from. If it was deposited by some person,

computed from some other slots, etc.

::: ’ In the development of this protocol, it was neccessary to overcome the confusion of having two distinct net-

'0:; ; works: the unit-slot network and the dependency network. Early versions of the protocol did all propogation

.l": of invalidation through the dependency network, causing numerous problems with slots which wished to avoid

:::! or affect their invalidation in various ways. The final solution was the separation of the SUPPORT-RETRACTED
and RETRACT-DEPEUDENTS messages by reference to the unit-slot network. This barrier finally allowed the

* s dependency mechanisi to avoid enforcing certain semantics on the unit-slot network.

'\-ﬁ ARLO’s initial configuration defines three basic sorts of dependency records: Siot-Computation-Records,

A : Slot-Citation-Records, and Slot-Boot-Records. Slot-Computation-Records are records of slot computations

':: (such as the computation of a default) which referred to other slots and can be invalidated by the invalidation

' of those slots’ values. Slot-Citation-Records are dependency records which refer to a particular source and

“ attribution responsible for them. Typically these are references to users or text files. Slot-Boot-Records

ri‘ : describe slots defined before ARLO’s critical bootstrap period; attempting to invalidate these records results

:' . in a proceedable error. This warning sometimes avoids fatal self-modification by programs in ARLO or

::::' unsuspecting users,

¢

R 2.3 ARLO Errors and Conditions

e

:::' ., ARLO uses the lisp machines” condition system [Weidd] to define a taxonomy of conditions with which it

t\ ; complains when it comes across unexpected or unusual situations. These conditions include both external

;.'. s condition= {such as a particular user or machine not respanding to requests) and internal conditions (such as

fatal recursions or type conflictz). Code using ARLO may anticipate and catch these conditions and there
is a standard facility  an ARLO coder — for doing this preemptive preparation. Futher. these conditions

- are defined =0 as to offer standard ways to proceed from various situations as well as providing pertinent

}i:é information to the user when she is azked to handle the condition {typically by entrance to the LISP Machine

A

; :,_:?_ debugger).

! P;'ﬂ In order to handle and report errors effectively, ARLO keeps track of various p. .o+ of it> dynamic
state. For mstance, the enrrent aecess state (the unit operations currently i progress) 1= always avatlable to
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ARLO Ken Haase

the program in the variable -SLOT-ACCESSES-. ARLO uses this dynamic record for, among other purposes,
identifying when it is fatally recursing on some slot access. 8
The function where can be used to look at this part of ARLO’s current dynamic state: It produces a

trace that looks like this:

ARLO is currently:
4: trying to compute the Supervisor slot of {#>KYLE}

3: wvhile getting the Supervisor slot of {#>KYLE}
2: vhile trying to compute the Hacking slot of {#>KYLE}
1: vhile getting the Hacking slot of {#>KYLE}

If you use the debuggers Control-M command to send a bug report on an ARLO condition, a version of
the above trace is included in the bug message. In addition, you can type the keystroke command Contgol-?
to get a vhere trace while in the debugger.

2.3.1 Anticipating errors

ARLO’s errors signal not only unexpected conditions — such as type conflicts arising from sloppy generated
or user code — but also “unfortunate” conditions such as failed searches or absent users. For both of these,
the program itself might want to take action when the error occurs. In the case of unexpected conditions
{what we might call true errors), the program might wish to repair or banish a definition or description; in
the case of unfortunate conditions, the program might wish to apply another method or simply assume a
harmless default. Harnessing the Lisp Machine’s condition handling system, ARLO is able to answer both
of these demands.

Unfortunate conditions are generally conditions of failed methods, for which there are alternative re-
sponses or actions. In ARLO, unfortunate conditions are handled by “try and try again” functions, which
possess many distinct methods for performing their computation, moving from one to the next if an error
occurs. These functions are typically synthesized by ARLO coders 2.6 such as the METRODS or EXPECTING
coders 2.7. When errors occur when these functions are executing, they throw out of the erring method and
advance to another or signally a final error if no more methods exist.

Unexpected conditions, on the other hand, generally arise from ill-formed programs or descriptions;
their occurence generally demands the alteration or generation of relatively large programs or descriptions.
A= such. the reaction to such errors falls into the class of operations which we identified in 1.2.1 as deliberated
inferences. Here we perceive 1 powerful pattern to the interaction of spontaneous and deliberated inferences:
deliberated inferences arise from the failure of spontaneous inferences. It iz only when our cached. compiled.
and common methods fail that we turn to the carefully constructive process of deliberation in our problem
solving. We must at least -- if we wish to build mind-like systems with ARLO - provide explicit classes of
these unexpected conditions which reveal precizely how the languages definition and description have been

:traine-]

5” ARI O iz about o perfarm ooslat access, it first checks that it is not alrendy (further up the stack) perform-
ing it-- if it is, it signils a Fatal-Recursion condition which muy either be caught by ARLOs “expectations™ .1
reported toothe user.
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ARLO Ken Haase

2.3.2 Classes of Errors

A newly loaded ARLO defines a small collection of special conditions. As ARLO (and programs using it)
venture into new domains, new techniqucs and new methodologies, this collection of conditions should grow
to become both more “worldly™ and more tightly connected to the structure of ARLO.

All ARLO conditions inherit from the condition flavor ARLO-CONDITIO!N. Currently, the following con-
ditions are defined in a newly-loaded ARLO:

' e Fatal-Recursion is signalled when ARLO notices that it is trying to perform some operation which is t 3
already being attempted. The user is offered the option to try the operation using non-reflexive sub- I
primitives, or she may use the standard debugger commands to re-evaluate or return a value from the :
fatally recursive call. (3

e  Slot-liot-Found is signalled when an attempt to inherit some slot through some relation fails— often
this error does not reach the user, but is caught and handled by ARLO itself. If it does reach the user, ;.i;;
she can proceed by either providing a value to cache locally, trying to inherit through another slot, or ‘;'t
looking on another unit for the value. :::‘

) e  Unacceptable-Value is signalled when a value being stored on a slot is of the wrong type for that sort of :::l
slot. If she wishes, the user may tell ARLO to go ahead and store the value anyway. vt

e  Unacceptable-Unit is signalled when a slot is being attached to a unit of the wrong type. As with T;‘

Unacceptable-Value, the user may tell ARLO to go ahead and store the value anyway. The abstract e

' condition flavor underlies both the Unascceptable-Value and Unacceptable-Unit condition flavors. b
N

e Boot-Conflict is signalled when a slot which was defined before ARLO’s second boostrap is being
invalidated. This will typically happen when a new value is being placed there. Going through with ¥
such a replacement might cause a problem because such a slot may — in its boostrapped configuration —

_umplicitly depend on itself. E.G. ARLO may have to reference the slot being invalidated in order to finish :
retracting it or put a value in it. While ARLO is generally robust about changes whose dependencies :“
are explicit {and thus non-circular), all bets are off for pre-bootstrap definitions which ground ARLO’s \
self-description. A

e  Cant-Default-Slot is signalled when the value of a slot cannot be defaulted; this might happen if the “
slot was never intended to default, or if all known methods for defaulting the slot have failed. Often this Vi
may be caught by a prepared handler which then deposits its own “default” as a replacement value. f;:lt
d e  Qut-Df-liethods is signalled when a try-and-try-again function 9 runs out of methods to try in computing l; ‘f
.ome value. The user can proceed from this by providing either a value to use as a result or another '!:'
method to try. When this condition is reported to the user, it describes the methods it has already tried A
. in computing the value. Ofteu this error is caught by higher level try-and-try-again functions which "
p move on to other higher-level approaches when this is signalled. f W
s A
9A try-and-try-again function tries one method after ancother to compute a value, moving onto the next one if the :‘,
) previnus fuila. ARLO supports two sorts of try-and-try-ugain functions: one moves onto the next method only if ‘;
the current methad fails in some “expected way™; the other is a blanket version of the first, that tries the next
methed when any sort of errr cceurs. A
Ay
S
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e  User-lot-Found is signalled when a query to the user times out. This should be connected to ARLO in
a more intimate way, using a user model to decide when to quit, and being able to figure other methods
of contacting the user. (Such a model should also clearly incorporate some theory of etiquette!) )

2.4 Reflexive Operators . 8

ARLO’s operation refers to the in-core description of its own semantics in such a way that when its description g
is modified, its performance changes. This is done via a data-directed mechanism called reflexive operators. v

10 Reflexive operators are functions of the form: 3
(<operator> <unit> <slot> . <remaining-arguments>) !
(where <operator> is a reflexive operator) and working by applying the To-<operator> slot (a slot also defined :
in ARLO) of <slot> to the arguments <unit>, <slot>, and <remaining-arguments>. For example, the form: Of
(Put-Value #>Jane #>Age 25.)
takes the result of (Get-Value #>Age #>To-Put-Value) and applies it to the unit named Jane, the unit named ';_
Age, and the number 25. This application might then (for instance) verify the suitability of 25 as the value y
for Jane’s age or perform various dependency maintenance functions in addition to — or perhaps in place
of 11 — actually depositing the value. :o
In the same manner, the form: -
(Retract-Value #>Jane #>Age) :
works by taking the result of (Get-Value #>Age #>To-Retract-Value) and applying it to the units named Jane .{
and Age. This will then — typically — retract the value on the Age slot of the unit named Jane. ','{
2.4.1 Staunching an infinite regress | :
it ]
The one significant exception to the reflexive operator mechanism is the Ger-value function. The mechanism
described above runs into a snag when we try to define Get-Value as a reflexive operator; we would like “
Get-Value to work like any other reflexive operator, evaluating: J
(Get-Value <slot> #>To-Get-Value) N
to get an appropriate accessor, and applying this accessor to <unit>and <slot>to get a result. Unfortunately, 0
this approach ends up infintely recursing 12 on:
(Get-Value #>To-Get-Value #>To-Get-Value) )
To get around this problem, Get-Value is only partially reflexive: instead of calling Get-value to find a ,"
To-Get-Value slot. it checks <slot> and its prototypes — a relation defined as part of ARLO’s initial Y
configuration — for a To-Get-Value slot. A slightly cleaner version of this might look at the To-Get-Value !
data structure itself for the function to use in its search, rather than uzing a hard-wired defimtion. s
2.5 Representing Representations: The Details ~
n
| 7
1 This terminolagy originates with ARLO. *f
1f the value being deposited were inapp-rprinte by some criterion, it might signal an errcr instead of depesiting
the value. -~
4 IZARLO nswdly catelies such fatsl recursions and signals anerror eondition,
>, 3
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ARLO Ken Haase

The reflexive operator mechanism is an interpreter for structures specifying the tnplenientation of frame-
based languages. From a partial description of a given representation language. ARLO generates — by
iheritance from abstract specifications and the synthesis of standard representation functions -- the precise
details of its implementation. ARLO’s basic definition specifies the components of this generation process:
inheritance mechanisms, automatic coders, descriptive constraint predicates, etc. These primitive mecha-
nism= for language definition are themselves described in ARLO’s “pre-configured™ representation and are
interpreted by reflexive operators in specifying and compiling other representations. The primitive definition
of this core can thus be extended or changed — carefully! — to alter or expand the capabilities of the
language.

ARLQO’s centrel core is bootstrapped by setting up an initial description — to be interpreted by reflexive
operator: — for a simple representation language. Facilities like coders and more complicated representation
compilers are then described (and executed) in this representation langauge.

In ARLO’s central core language, the primary inheritance mechanism — the mechanism by which
properties are declared abstractly and then propogated to particulars — is Prototype inheritance. This sort
of inheritance generates defaults for values by searching along the Prototype relations between units. The
Prototype hierarchy is an exception-shadowing hierarchy of slot inheritance which keeps dependencies for
its inherited and cached values. While representation facilities built in ARLO define and use other sorts of
inheritance mechanisms, ARLO itself goes little beyond this simple mechanism.

When a user begins building a representation in ARLO, she generally uses the Prototype relation to refer
to a collection of pre-defined abstract slot descriptions, from which the particulars of ARLO and its embedded
representations inherit. A newly bootstrapped ARLO has a small collection of these prototypical slots,
defining simple classes of relations whose implementation details inherit through the Prototype hierarchy;
extensions to ARLO may well define entirely new such classes of slots beyond these.

The most basic sort of slot is the Primitive-Slot; Primitive-Slot is a non-defaulting, non-restrictive
slot, and hes at the root of the Prototype hierarchy of slots. The Prototype relation is a primitive slot,
but most other slots lie deeper in the slot inheritance hierarchy (the Prototype hierarchy) than this. The
first level of slot-types defined beneath Primitive-Slot are Generic-Slots. (eneric slots are the way ARLO
implements generic objects, an object oriented (as opposed to slot oriented) method of dispatching certain
slot and unit operations.

Beneath Generic-Slot, ARLO defines Typed-Siots whose values and attachments (the units they attach
their values to) must zatisfy certain predicates. Beneath Typed-Slot is defined Slot. the protoypical slot
referred to by most of ARLO’s definition. Slot is a generic type-restricted slot which may compute “aszumed”
values for its assignments.

The functional properties of these slots are not — unfortunately — automatically merged from com-
ponents along the hierarchy, but are hand-coded into implementation functions at for each new type of
<lot. The To-Put-Value :lot of Typed-Slot for instance. is hand-coded to operate generically, rather than
antomatically accquiring the generic nature of Generic-Slot’s modifiers. Of course, this hand-coding is only
necces=zary because they share the functional role of slot modification; the To-Put-Value slot of the defaulting
Siot need not Le =pecially coded. since Slot defines no new modification functionality and may just inherit
Typed-Slct'= To-Put-Value without merging
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b0 2.5.1 Generic Objects & Shadow Slots v

ARLO implements generic objects — as in SmallTalk |GR84) or flavors (WM82}/Can83] — with a mechanism

:j called shadow slots. In languages like SmallTalk or the Lisp Machine flavor system, the primary functional 3
‘\j operation is message passing, where an object iz sent a message in order to perform an operation on or !
v' with it. These languages are generic in that each object (or more precisely, each class of objects) has :
i local definitions for handling the messages it receives in different ways. In ARLO, on the other hand, the L
Y primary functional operation is slot access (though the slot accessed may contain the definition of some ]
i functional operator), and the character of the operation is determined by the global description of the slot ¢
X being accessed. Slots which are generic, however, permit a unit to shadow their global definition with a \
,"::: locally specified redefinition; these redefinitions are other full-fledged slot descriptions which supersede the :
',',:3 global defaults. Thus, particular units may redefine some slot’s definition {where the definition is an ARLO v
. description) for themselves.
¢ Shadow slots are implemented as a non-invasive extension of ARLO. By non-invasive, I mean that the s
-_ implementation does not modify ARLO’s reflexive operator mechanism but simply builds upon it. This is :
'{' doue by having the implementation of a generic slot (as functions stored on the slot’s description) explicitly R
"N check for replacement definitions of themselves on the the unit they are operating on. Most of ARLO’s slots -y
N (aud most of the slot accessing functions offered to users) contain this explicit check, encoded by the macro -
Shado.ing-Slot.
'; A generic zlot looks for any “shadowed™ definitions of itself by extracting its own Shadov-Siot-Slot
- from the unit it is operating on. For instance, the Home-Phone slot might have a Shadow-Slot-Slot of h
- Shadoved-Home-Phone-Slot. The Shadowed-Home-Phone-Slot of any particular unit then contains the re- '!
's'.: definition of Home-Phone — if any — to use on that unit. Then, descriptions of people with unusual phone I‘
numbers — overseas or buried in extensions — might have a Shadowed-Home-Phone-Slot whose defini-
. tion would make their numbers acceptable or accessible despite some assumed global standard defined on 3
{ ; Home-Phone. : ‘_
.
N 2.5.2 Type Restricted Slots .
'~‘ -
~ Another abstract slot is the type restricted slot. The type restriction mechanism in ARLO refers to types i
. defined in a non-excepting generalization hierarchy of predicates; the value and attachment (the unit a slot
» attaches its value to) of a type-restricted slot are constrained by a pair of these types. (This hierarchy is 4
:: described in further detail 1 Section 2.7.) The Data-Type slot of a type-restricted slot determines what types :
N of values the clot may accept; s lakes-Sense-For slot determines what types of objects {typically units) |
;" the slot may be attached to. The type checking predicates of a slot’s Data-Type and ilakes-Sense-For slots are ;
merged nto its To-Verify-Type slot; this value i1s a function of a unit, slot, and value about to be combined “
>, which signals an error if either of the predicates fails. This error is proceedable. but of course such an action K
': may have dangerous repercussions. r
::: Mot of the =lots of ARLOs initial configuration are type restricted slots, constraining themselves hy (.
,. teference toothe predicate generalization hierarchy: but the relations forming this hierarchy (in their recursive d
8 vt e desonbed and defined by ARLO. This circularity of reference is mitially established when the type ¥
heer by e Lootstrapped (tecalling Figure 2-1). a major event in ARLO s compilation and deployment
-, ¥
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K 2.5.3 Defaulting Slots -
e
s <4
:, SLOT is the abstract slot first referred to by most representations built on top of ARLO. As well as having ]:
type restrictions as described above, units inheriting from SLOT have defaulting methods for generating absent o))
:l values. Wlhen no value for this sort of slot can be found directly on a unit, a default is generated by calling .'i
!: the function stored on the slot description’s To-Default-Value slot. This function is called on both the unit o
being referenced and the slot being defaulted and returns the value computed and a truth-value (T or NIL) e
.‘; to indicate the success of the computation.13 ::
. ~X
N Often, the To-Default-Value property of a particular slot must also be generated by default; the To-Default-vValue ‘_t
N slot of To-Default-Value first tries to get a LISP implementation off of the slot’s High-Level-Definition ~3
) and failing this, ascends the hierarchy of abstract slot specifications (the Prototype hierarchy) looking for &
a To-Default-Value slot to use. A slot’s High-Level-Definition — if it has one — is an abstract function -
‘—: description which may be implemented by a lisp coder as described in Section 2.6 below. :
A 4
: In the final analysis. the semantics of most slots built on ARLO’s core {those inheriting from CORE SLOT) :;
.f are determined by the two components of ARLO just introduced: the coder mechanism which describes >}
K how “assumed” properties are computed and the type mechanism which constrains the values of slots by
" predicates in a generalization hierarchy. Both of these modules are described in more extensive detail below. R
! i
! 2.6 The ARLO Coder N
\- ~
vy . i . . . . L N
o ARLO implements a facility called coders for generating lisp code from high level functional descriptions. M
This facility is implemented by a representation language — described and implemented in ARLO — for
. describing LISP functions. Using this language. a user — or a sophisticated program — describes how partial N
"j specifications of particular sorts of function are expanded into fully implemented lisp definitions. Coders _,
$ allow common representation function~  like property inheritance, network searches, function composition, :}:
: or value restriction to he gencrated from their functional specification. Every coder generated function
begins with an ARLO unit which partially describes the function to be generated; the operational slots of
N the function description - its lambda-definition, documentation, etc - are generated as defaults from this
. dezariptivin. When o uzer or program defines o particular coder, <he iz actually defining the way in which >
:' certaim slots such ax Lambda-Definition or Documentation  default for a particular sort of functional ;
‘\ description. ¢
3 Each time a coder implements a particular function, it construct: a unit describing the function; the
LISP defnition. documentation, and name of the function are then generated by referring to methods stored X
N on the Coded-By =lot of the description. The value of the Coded-By slot is also an ARLO unit -—- a coder — :
) which has functional properties like Implementor, Documentor, ur To-iame-Function. Coders — with these .
o
P3This cecond v llur ases the mwoultp b vadue returns  f LISP Mo hine LISP =
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. relevant slots — are defined by a Define-Coder form:

. (Define-Coder ( Coder-name . description-parameters)
.(,t.r, documentation-for-coder
'(.’-@"," ( function-name-specification . arguments-for-function)
'4""-\,"': documentation-specification
. ‘..-, body-specification)

Define-Coder constructs a unit named coder-name which describes how to generate functions of some
N, particular type from specified description-parameters. These functions are actually generated as appropriate
l:‘ i:: Lambda-Definition slots for descriptions which are initialized with some given description-parameters. De-
’: ﬁ( scription parameters are slots stored on the functions’ descriptions, and it is by reference to these properties
R \ of the description that the coder generates implementations, names, and documentation.

) Each description parameter is either a symbol — in which case an indistinguished function-describing
gl slot with that name is created — or a list whose first element specifies a slot,/parameter name, and whose
: A‘_-' remaining arguments are slot-value pairs to be deposited on the slot’s description {perhaps affecting it’s
W implementation).

:'|, Function-Name-Specification specifies how to generate names for the functions the coder generates.
W If it is a symbol {such as MATRIX-MULTIPLY), each function name is an iterated genzym of that symbuol
{e.g. MATRIX-MULTIPLY-7). If the specification is a lisp form, it is evaluated to produce cach function name,

R referencing the description-parameters of the coded function as free variables, and the function dexcription
“: itself by the variable coder-name.

"- Arguments-For-Function 1s the argument list for each function the coder generates. ARLO also knows
x“ how to extract the argument list for general system functions not synthesized by ARLO, allowing operations

h which use the argument list — such as functional composition — to be applied to functions defined by eitlier
Wi the user or other resident systems.

ﬁ:- Documentation-Specification is a form which, accessing the description parameters and function descrip-
:{.: tion as free variables, prints documentation for the function to the stream STA!IDARD-OUTPUT.

}:“’ Finally, body-specification is a lisp form returning the body forms of the function generated by the coder.

e As with the previous structure generating forms. this form may reference the description parameters and
function description as free variables.

\ The Define-Coder form creates a coder deseription ~ an ARLO umt named coder-nami which

$, describes how to generate names. documentation, and lambda definitions for the functions it codes Tt

X N alzo implements a generator function, named coder-name, which constructs a function description with the

f‘, appropriate CODED-BY slot and with description parameters from itz arguments. The function defaults the
lambda-definition — and LISP compiled definition -- for thiz function description, finally returuing the

3 generated name of the function.

~. .

::'__: 2.6.1 Representing Programs
:-_ The coder mechanism was originally concetved as an embryonic. poor man’s version of the plan clhiche repre-
N sentation used in the Programmer's Apprentice project at MIT 'SR7G Ricatr Wat7a By representing typical

' representation functions in this exphcit way. the tazsk of understanding or itelligently modifving ARLO
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B definitions is far more straightforward. Mutative systems such as AM and Eurisko generally modified LISP
) functions by heuristically munging s-expressions which encoded LISP definitions of relevant functions. The
,\. coder mechanism was designed to make explicit and accessible - in an ARLO representation - descriptions
of the implementations of many of the system’s functions and operations.
'
:; 2.6.2 ARLO’s Coders
"y
o The initial ARLO configuration defines 7 coders:
’:'l‘ e  Slot-Compositiontakes a list of slots and constructs a function which is their comporition. For instance. a
i.s. composition of the Father and Mother slots would be a function for extracting ones paternal grandmother.
::: e Inherit-Through generates a function for inheriting through a particular relation.
::v. ®  llethods constructs a composite function from a list of other functions, which may also be generated by
; coders. The function generated tries each function — one after another — until one succeeds (returns
i without error). This function is called a try-and-try-again function, trying one method after another
\-:: until one finally succeeds, being careful about the accumulated dependencies of each attempt (it resets
‘:{': the dependency tracking mechanism before each attempt.)
.'3': e  Expecting is like lethods, but the function it constructs only “tries again” if a preceding method fails
by " m an “expected” way. Of course, if an unexpected error occurs inside of an Expecting function. it may
well be caught by other Expecting or Methods coded functions above it in the calling sequence.
-‘.: e  Test is a coder which generates a predicate function which is the conjunction of it~ component functions.
';‘ e Inherits”?is a coder for predicates which determine if one unit inherits from some other through some
'j relation. (For instance, if some person is directly above some other in some hierarchy.)
o, e  Type-Checker generates the function for verifying a slot’s assignment — its value and attachment --
from the slot’s llakes-Sense-For and Data-Type properties.
"
) ﬁz 2.6.3 User Defined Functions
} f:
:- The function description language used by the coder is also used to record user function definitions. The
b function DEFILE has the syntax of LISP’s DEFUlL, but builds an ARLO description with appropriate Lambda-
Definition and Documentation slots. The function AX is an inline version of DEFIVE which returns the name
ay of the function it defines.
;;.‘ The function GET-FUICTI0!-DESCRIPTIO: hinds or generates an ARLO description of the function specified
:: by its single argument. Of course. if the function was not appropriately defined (by DEFIVE, AX, or sonie
"|$ automatic coder}). some information (such as lambda definitions) may not be available.
. 2.7 The Type System
+Tigy
"é The coder mechanism is used by ARLO in two roles: the hmplementations of “defaulting functions,” and
e the specaification of ARLO's hierarchy of types<. In this second role, coders are defined which nnplement
:lln common representational predicates (such az checking inheritance over various relations) and particular con-
O junctions of such predicates. These generated predicates are defined in a generalization hievarcly, descending
_ from broader predicates (satished by arge numbers of object= and unitz) iute progreszively more particulm
R
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iy predicate categorizations. Each of the predicates in this hierarchy is represented by a “type.,” an ARLO !
description which consolidates a predicate function with associated functions for describing and operating
e on objects which satisfy the predicate. ARLO’s “type hierarchy” is the predicate generalization hierarchy .
>, . imposed between these type descriptions.
5 The type hierarchy also fills two distinct roles in ARLO’s initial configuration. First of all, its predicates .

D
i serve to constrain the “sensible” attachements and values for particular slots; secondly, it provides informa- N
tion about how to print, describe and parse the sorts of values known to belong to certain sorts of slots. For
o systems implemented in ARLO. beyond the definition of ARLO itself, it both provides constraints on the
iz generation of new slots from old and serves as a hook for hanging type specific knowledge in the form of .
-l'\ inference procedures or heuristics. .
¥, g
')::.l The gencralization hierarchy between types is determined by two slots: the Generalization slot and ,
the Specification slot. The Generalization of a type is the type upon which a type is built; a type’s
e Specification determines what additional criterion objects of the type must satisfy. The predicate for a 1
N given type is hence the conjunction of the type’s specification and the predicate of its generalization. This '3
'h\ L. . . . . . . . \
7y principle yields a strict generalization hierarchy — any instance of T is also an instance of Generalization(T)
)-2 — which simply supports operations like classification (quickly finding the types which an instance satisfies %
». by traversing downwards the tree of generalizations) or property clustering (automatically generating new
types from old by specializing around particular property regularities in their instances). In addition to
; : providing a formal framework streamlining these sorts of operations, the generalization relation 1s used to .
,":-r inherit type specific properties such as display functions, description parsers, or inference procedures. K
F-' "
\:: The type system presents its own bootstrap problems; it is described in ARLO (as as a representation
'.r langauge for hierarchically organizing predicates and their properties), but is used (in turn} to constrain the J
values and attachments of ARLO’s own definition. As a result, ARLO’s type bootstrap is more complicated
A than its representation bootstrap (which was described in Section 2.5). When ARLO is originally defined
.::: as a representation describing language, its type restrictions and constraints are represented by symbolic :
n tokens referring to type names. ARLO’s second bootstrap — its type bootstrap — takes these symbolic
:: tokens and replaces each type name in ARLO’s self-description with a pointer to the actual type-describing
e unit it refers to. The timing of thiz bootstrap is critical, as the type system uses both ARLO and the coder
. mechanism in its dehnition. and enough of these mechanisms must be compiled and cached before the type \
¥
" svstem = completely enabled '
; l-.‘ IS B - - r LR . . . t
i, The package of ARLO utilities implemented for CYRANO significantly extends the type system into a i
'5 general classification system. This extension includes a classifier for placing instances in the hierarchy of ‘
oy predicates {similar to the XL-07E classifier) and au implementation of heuristic and inferential rules wlose
“IF” components refer 1o the type hierarchy. Thiz innovation automatically places rules in a generaliza- o
'." tion /specialization hierarchy from which they may be indexed to particular objects or tasks. A new variety .
e - . . . . . . . . . Lt
b of automatic predicate coders accompanies this extension, permitting the specification of constraints on and
B : o
T between various sub-parts of descriptions. "
e ¢
3 2.8 Archives and Layers: Saving Representations
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Upon the edifice described in the preceding sections, users and clever programs build both new representation
schemes and particular representations within those schemes. Much of this construction takes place in the
same manner as ARLO’s own nitial construction: through top level forms which side-eflect the environment
to install particular representations and representations of representations. But much of the structure built
on top of ARLO is a dynamic stuff, constructed by interactive editors, database parsers, or thoughtful
programs. The preservation of these structures — defined in no particular file, but only by the accumulation
of definitions and mutations over time — is critical if any of our programs is to have a life beyond a single
session or a handful of examples.

Archives and layers are ARLO’s tools for saving out collections of in-core units and their relations; units
and relations are dumped as data files from which they may later be restored. An archive stores a collection of
units and their connections, a layer stores the changes in such collections of units and connections. Archives
are used to store bodies of knowledge and the representation schemes (in ARLO, another sort of body
of knowledge) in which they are expressed; layers are used to store personal modifications or incremental
changes to these archives.

The implementation of archives and layers posed many difficulties, most of the arising from the circularity
and complexity of ARLO s inter-relations and dependencies. It is worth noting that the Lisp Machine system,
not designed to support the structured preservation of partial environments, had to be significantly extended
to permit dumping of ARLO structures. This section, however, will concern itself only with the dumping
abstractions used by ARLO, and not the implementation particular details of their realization.

f
P

Like nearly every otlter process in ARLO, the dumping of ARLO units and relations is data-directed.
The archive to which a unit belongs is a slot of the unit; every ARLO umit is given {or assumes by default) a
ty-File-Of-Definition slot. For unite defined by top-level LISP forms, this is the file in which the LISP forms
appeared: for other units, this slot is the archive the unit is defined in. A unit’s archive is either an explicitly

AR
R

Y

IS

deposited pathname or {(by default) a logical pathname fo the form **ARLO KBases, kb BI! >'* where kb
is the knowledge base the unit was originally defined in. The #>My-File-0f-Definition slot is defined (as an

ARLO slot} to maintain backpointers from archive pathnames to the units defined in them. Thus, when the
user asks to dump and archive (specified by its pathuame), the set of units to be dumped are avaliable as a
property of the pathname.

An archive iz dumped through forms which bind — at load time — particular unit names to unit objects;
the reference to each unit object is then realized in forms which access or regenerate the unit. Any given unit
reference 1z either local or external: a local unit reference refers to a unit in the current archive; an external
unit refers to a unit in some cother archive. External unit references dump as a pair of unit name and unit
archive, if - at load time — the unit name is unbound, itz archive is loaded. and the unit is then directly
referenced.

Local unit references dump as either per-file dumped-ohject indices (supported natively by the ZetaLisp
binary dumper) or as forms which regenerate the unit. In the first case. a regenerating form has already
appeared in the file and the restored object is directly referenced, in the second case. the regenerating form
mnst be produced. and this production iz done by calling the #>'y-To-Dump-Sels s<lot of the unit on the
unit. The value returned by this function is a form which regenerates the unit and any attached pertions

of i environment. Fordnstancoeo when a function describing unit 1= regenerated s defimtion is recompiled
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into the load-time environment: if a unit describing an active process is loaded, that process might be
instantiated and started when the unit is restored. The #>My-To-Dump-Self slot of a unit need only take
care of reestablishing particular parts of the LISP environment dependent on. or depended on by, the.unit
dumped. A collection of canonical dumping functions {such as DEFAULT-UIIT-DUIPER) provide regeneration
forms which handle reestablishing the ARLO environment connected to a particular unit. These forms must
not only reestablizh a frame with its connected slots, but must reestablish the units and slots those slots
refer to: when this reestablishmient must reach between archives, it becomes insoluble in general and difficult
in particular.

The problem can be characterized in the following way. Every archive has an edge where it connects to
other archives; a given archive has certain assumptions about what lies over its edge, but it only has limited
information about the content of these bordering archives. When an archive is reloaded. it is not reloaded
in a vacuum, but must be established with its original edge connections intact. When inconsistent changes
hiave been made to multiple archives (an archive X refers to a unit in an archive Y which was never dumped)
the problem is insoluble; but if a degree of consistency is maintained, then the problem of establishing an
archive amongst its neighbors requires dumping the archive to just beyond s edge.

Most of the responsibility for reestablishing the cross-archive network is carried by ARLO’s dependency
network. Since this network specifies most of the explicit or implicit connections in the ARLO slot network.
rees. ablishment of the dependency network reestablishes parts of the ARLO unit-slot network as well. By
using references to dependencies over a given edge, many of the problems of dumping partial environments

" of the network just outside a particular archive — just over its edge

are finessed or solved: “assumptions’
- are found or recreated when the archive is loaded. When this search or recreation fails (when au external
dependency 1z assumed that does not exist) the loader “fakes” the dependency and warns the user of the

temporarily patched inconsistency.

2.8.1 Lavers

Lavers are the way ARLO records incremental changes to its descriptions. Their mechanisi is quite simple:
at some point (typically after an archive or set of archives is loaded) the state of a collection of archive:
15 frozen into a “layer”. Then, at some later point after a series of introductions and modihcations to the
archives. the differences between the frozen layer and the current state of the archives i= computed, and
appropriate modifying forms are dumped in much the same manner az an archive. In this pracess the data

direction and cross-archive connection proceeds as above.
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s Chapter 3
By An Example: Representation
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This section describe a toy ARLO database of researchers and their interrlations. It is part of the default
% systeni, residing in the Inquir knowledge base, useful for testing and demonstration. The first section of this
= example describes and explains what the code in the file looks like; the second is a script of an interactive
examination on the LISP Machine — of the domain and its representation langauge.

~N
x 3.1 Building Basics

TR

.
o3,

oY N h Y

The first step 1n huilding a representation system in ARLO is to define the basic essential umits and relations :
on which the mdividualz and relations of vonr representation will build. If you are building on top of raw
ARLO, the inheritance mechani=m yon are likely to use is #>Prototype inheritance; if you are using a system
built on top of ARLO (for instance. an FRL or KLONE clone) you may be using an entirely different

mechaniztm. Of course. if vou wizh, vou can easily implement your own inheritance scheme in ARLO and
A use that. {

e

< The following expreszions describe the prototypical person, construct a unit describing the “person
>

X type”. and build a4 protutypical slot from which slots referring to people will eventually mherit. :

o (DefUnit Person

(Cescription ~"This s the prototypical person ''))

i
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(DetUnit Person-Type

(Description
"This 18 a type satisifed by any unit inheriting from Person *')

(Prototype #>Any-Iyps)
(Generalization #>Unit-Type)
(Specification (Inherits? #>Person #>Prototyps))
(#>Function-To-Find-Interactively ’'get-person-from-menus)
(#>Function-To-Read ‘read-person))

(Put-vValue #>Person #>My-Specific-Typs #>Person-Type)

(DefUnit Person-Slot
(Description
*“This is the prototypicel slot which attaches to people.’’)
(Prototype  #>Slot)
(Makes~-Sense-For #>Perscn-Type))

The definition of the #>Person unit constructs a “placeliolder” to which individual people descriptions
will refer. Later, we may burden this unit with a variety of information which those individual people
descriptions will inherit of refer to. For instance, the #>Person unit may be used to shadow some slot
definitions in order to accomodate the restrictions and potentials of people.

#>Person-Type

1= defined as a specialization of #>Unit-Type which requires mheritance —- via the #>Prototype relation
— from the unit #>Person. The generalization hierarchy used for types is a non-excepting hierarchy of pred-
icate specifications. ARLO’s utilities implement a KLONE-style classifier for this generalization hierarchy,
determining which types in the hierarchy are instantiated by a given LISP object or ARLO description.

The #>:'y-Specific-Type slot of a unit is an ARLO type description subsuming all ARLO units inleriting
(via the #>Prototype relation) from the unit. #>Person-Type is deposited there as a forethought: if we
had asked for the #>iy-Specific-Type slot of #>Person without storing #>Person-Type there beforehand, an
appropriate type description would have been generated on the fly. One thing we will exploit #>Person-Type
for is defining the way references to people are parsed, printed, and described.

Finally. #>Person-Slot is a version of #>Slot which embodies a particular constraint on the units it may
be attached to.

3.2 Defining Slots

The following expressions define slots for the various appellations for individual people: these slots present
a vartety of different value defanlting mechanisms.
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K (DefUnit Full-Name
‘:i '_ (Description "“This is the full, formal name of a person '’')
e: Y (Prototype #>Person-Slot) ; Attach to people
::: , (Data-Type #>String-Type) ; Accept strings
_t.e:{ (To-Default-Value "ask-user-for-slot)
‘ (To-Prompt-For-Value
38 W (AX ask-for-full-name (person slot stream)
‘: (format stream "Yhat is the full name of the person described by a?"
:‘.' person))))
!':‘ ol
o ‘
2 (DefUnit Personal-Name
(Description ~"This is the informal name of a person. '')
i::"‘ (Prototype #>Person-Siot) ; Attach to people
2‘ \ (Data-Type #>String-Type) ; Accept strings
,‘.:; (To-Default-Value
J',l". ; The AX macro — briefly mentioned on page 24 — internally defines
f.' ;; an exte:nal function constructing an ARLO description of the function at the same time.
(A To-Generate-Personal-Name (unit slot) ; Eztract her first name
L M (it (Ignoring-Errors (get-value unit #>Full-lame))
& :'.( (get-first-vord (get-value unit #>Full-lame))
Y *“Friend’*))))
1008
::‘
(DefUnit Last-lame.
i (Description ~"This is the last name of a person.'’)
"'-_‘..q (Prototype #>Person-Slot) ; Attach to people
S. (Data-Type #>String-Type) ; Accept strings
:l 3l (To-Default-Value
!:':. (AA (unit slot) ; Eztract her last name
S (it (Igporing-Errors (get-value unit #>Full-lame))
L (get-last-word (get-value unit #>Full-Name))
0'. **Random’*))))
& : The above are examples o. slots which compute their defaults in different ways. The #>Full-liape slot,
’ v+ for instance, asks the user for a person’s full name if it isn’t already specified. The Personal-liame <lot, on
‘_';_‘11 the other hand, extracts the person’s first name from her full name if possible and otherwise defaults to a
friendly solution. The Ignoring-Errors form used in the definition catches difficultiex with inaccessible slots
PO, or formats, returning nil if any errors were encountered in the execution of its body. The #>Last-liane slot is
::E) almost a copy of #>Personal-llame, extracting a last name from the #>Full-liame slot if possible and otherwise
:ﬁ"l ' defaulting to a random solution. In both of these slots we see an explicitly defined lambda-definition specified
‘:'. instead of an automatically coded higl-level description.
R The #>ilakes-Sense-For slot for all of these units defaults from #>Person-Slot, and each accepts only
F LISP strings for values.
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S 3.3 Inheritance Mechanisms
7« . The following slots illustrate how ARLO supports explicitly defined inheritance mechanisms of various sorts.
A3 (DefUnit Supervisor
\‘;” (Description "“Thias is the supervisor of a person ')
.':\ﬂ'{ (Prototype #>Person-Slot) ; Attachk to people
!.( (Data-Type #>Person-Type) ; Chauvingst, but....
(To-Default-Value ’ssk-user-for-slot)
N, (To-Prompt-For-Value
:&1 (AA ask-for-supervisor (person ignore stream)
Y (format stream "Yho is a hacking for?"
"' ) (get-value person #>Personal-Name)))))
&
(DefUnit Hacking
v g
A (r.escription ""This is what a person is hacking on.'')
:0. W4 (Prototype #>Person-Slot) ; Attach to people
~?Q:pi (Data-Type #>String-Type)
's:o:' (To-Prompt-For-Value
atd (A) ask-for-hacking-slot (person ignore stream)
. (format stream "i/hat is a hacking?"
.\_ (get-value person #>Personal-llame))))
-f. (High-Level-Definition
-(‘;$ ;3 Default from cnes’ supervigor, and ctherwise ask...
e ;3 (The character macro #8 returns a DESCRIPTION of the
BT N - .
v ;5 function whose name follows it.)
. (METHODS (1list (Inherit-Through #>Supervisor) #$ask-user-for-slot))))
1
lw ) ) _
"> (DefUnit Yorking-in-Field
' A (Description “"This 18 the field a person is working in.'')
i, 3\. (Prototype #>Person-Slot) ; Attach to people
i (Data-Type #>String-Type)
) (High-Level-Definition sAncther way to say it
: Ce (Slot-Composition (list #>Hacking #>Supervieor))))
"
W)
J:‘ (DefUnit “edging
i:im (Description " A monkey wrench in the works ')
(Prototype #>Person-Slot)
.a' (Data-Type #>String-Type)
:_;.\': (To-Default-Value (AA Yedge (un gl) (get-value un sl1))))
'\-':,,,: The first of the slots defined above is the #>Supervisor slot. which iz used to default the values of
ﬁ"\ a variety of other slots. The type restriction of #>Supervisor demands that its value be another person-
I describing unit, since other slots will be looking at its value — with unit accessing functions — to derive
-— their own values.
i."
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bl The second and third slots defined above perform inheritance (or defaulting) in different ways. The

- #>Hacking slot attempts to inherit its value by searching through the #>Supervisor relation, but if it fails —
:‘ b for any reason — it asks the user for the value. The #>Methods coder used to define this mechanism takes

> its clauses and constructs a try-and-try-again function. (Try-and-Try-again functions are briefly described ‘
"y on page 18.) '
e

EAcH
\. The #>Working-In-Field relation refers to one’s supervisor for its value also, but if this fails, the entire
[y attempted computation fails. In addition, the #>Slot-Composition coder is not characterized as a search,
7'-;. so the function it generates will be implemented somewhat differently. (It will not, for instance, signal a
ey #>Slot-lot-Found condition if it fails.)
"
‘ "I . - . . .
-0 Finally, the #>Wedging slot is merely there for purposes of demonstrating how fatal-recursion detection
X j works. Since the wedging slot defaults by getting its value, trying to compute a default for it will recurse
'?k indefinitely.
“.‘r‘ - e,

3.4 Shadowing Slot Definitions

b
}: To demonstrate the ARLO mechanism for shadowing slots, we construct two special units. The first,

#>Shadoved-Hacking, describes how to find and store a shadowed definition for the #>HACKING slot; this de-

, scriptions is another slot, defined to get its value by searching (with the LISP function Find-value through
! :;: the #>Prototype slots of a unit. To redefine the definition of #>Hacking for a group of units, we merely arrange
I that they have as a prototype some unit with the appropriate #>Shadoved-Hacking slot. In this particular
4 j example, we define a unit #>'inner with a shadowed definition of #>Hacking which asks the user for the slot’s
1" value, without first trying to inherit a value through the #>Supervisor relation.
13
s
)"

+]
.
i (DefUnit Shadoved-Hacking-Definition

(Description “"A replacement definition for HACKING '*)
(Prototype #>Shado:-Slot)
iy Search through prototypes for a value. i
(To-Default-Value :
(AX Fipd-Hacking-Slot (unit in-slot)
*“Looks for a replacement hacking definition
(or (find-value unit in-slot) #>hacking))))
(Put-Value #>Hacking #>Shadow-Slot-Slot #>Shadoed-Hacking-Definition)
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(DefUnit Yinner

(Description " “Somone vho doesn‘t always follow their supervisor.'’)

(Shadoved-Hacking-Definition

;3 When we construct a unit with a #>My-Name slot, the frue name

;5 of the constructed unit will be an enumerated gensym of the My-Name

;5 8lot (e.g. #>Hacking-0, #>Hacking-1, etc).

(make-unit (Ly-liame '#>Hacking)
(Prototype #>Hacking)
(Mekes-Sense-For (get-value #>Winner #>My-Spacific-Type))
(To-Default-Value ‘ask-user-for-slot))))

As a result of the above machinations, any person descriptions which have a prototype of #>Winner

instead of #>Person will use this alternate definition of #>HACKIIG in place of the one originally defined at the
top level.

3.5 Building the data base

The process of creating “individuals” in this example builds on the slots and prototypes constructed above.
Currently, there are two standard ways to build individuals in ARLO. One may either call DefUnit explicitly
from top level (the manner in which the slots above were created), or write support functions calling Nake-Unit
internally to construct units with particular properties. For purposes of clarity and brevity, this example
uses only the first of these techniques, explicitly defining each individual person description at top level.
The following DetUnit forms build a small database of people-describing units for an imaginary Al lab.

(DetUnit Calvin
(Description “This is a well known robotics hacker.")
(Prototype #>Person)
(Full-l'ame "~ “Susan Calvin’’)
(Hacking ~“Robots’’))

(DetUnit Rodgers
(Prototype #>Person)
(Full-lame " "Robert Rodgers'‘)
(Supervisor #>Calvin)
(Hacking "~ "Emotional Analouge Robots''))

(DetUnit Charo
(Prototype #>Person)
(Full-iame "~"Elizabeth Charo'’)
(Pergonal-.ame " “Beth'’)
(Supervisor #>Calvin)
(Hacking ~"Cognitive Fundamentals''))
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whe I\
~ (DefUnit Lee
» (Prototype $>Pesrson) X
554 (Full-name "“Pat Lee’’) .
‘ (Supervisor #>Calvin) .
Pt (Hacking " *Engineering Design’’)) ’
(1A
vyt .
W (DefUnit Kyle )
aé (Prototype #>Person) ‘
] (Full-llame " "Kyle 0°Shea’’))
) t
L
(DetUnit Arthur
g (Prototype #>Person) Y
“t: (Full-llame " "Arthur Pendragon’’) q
,:_‘. (Hacking " “Fantasy Games''’)) '
L}
o !
At
(DefUnit Alice
XN (Prototype #>Person) ;
_- (Full-lame "“~Alice Adams‘‘)) ]
I; \
! L
*:: (DefUnit Brian ’
T (Prototype #>¥inner)
. (Full-heme ""Brian Yalking-Song’’)
3| (Supervisor #>Charo)) .
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3.6 At the Console

‘
kS, 3.6.1 Defaulting of Slots )
b N
:' (xb-goto 'inquir) |Change the default knowledge base. | s
»,.; #<Package CORE INQUIR 66156707> ,:
(examine-unit #>Kyle) Let's luok at Kyle's description. | -
Descraption of the ARLO unit {#>KYLE}: X
W Description The description of KYLE was not provided. ‘
. Prototype: {#>PERSON } : ::
3 Prototype 0f ,:
‘Y] My Creator: Ken Haase A
:' My File Df Definition: ARLO: SOURCES; INQUIR * > W
My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02.01 am
5.. Full lame Kyle 0°Shea i
My Name #>KTLE ™
Ay My To Describe Self: #'LOOK-AT-UNIT i
‘:' My To Print Self #'DEFAULT-UNIT-PRINTER "
K {
o The slots of Kyle’s description are tabulated above: slot names on the right, b
value: on the left. Note that the values are printed out based on the semantics "
:: of the slot. #>MY-TIME-OF-CREATIOlN, while stored as an integral number of seconds ;
A past New Year’s Day 1900, prints out in a standard English format. Each unit :
o 12 also annotated with the file of creation and (if provided) a string describing :
ol the unit in English. In Kyle’s case, there 1s no description provided so a defauit
(describing the lack of an ascribed description) is provided. But the description t
b, above has no real information about Kyle: what he does, who he works for, etc.
’: So we begin our interaction by querying about these things... 5 \
- A
iy \
i) Editing {#>KYLE} >>G Describe Slot Value - )
“hich slot of {#>KYLE} would you like to see?Hacking
. )
: Here we ask for the Hacking slot of the unit. Since there 15 not one there h’.
: already (as we can tell from the description just provided) its value must be de- N
O faulted using the function on the To-Compute slot of Hacking. This function - :::
:: as described by 1ts high level definition provided above - first looks through the
Supervisors of the person and then - if that fails - asks the user at the console ‘
) for a value. But in order to search through the supervisors of Kyle 1t must first :*
» know who his immediate supervisor 1s. Since the Supervisor slot defaults by \'
':a asking the user at the console, we are asked... ,‘:
e Py
*
p “ho 1% Kyle hacking for?Pat )
M 35 3
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Pat 1s the first name of “Pat Lee”, the person we are referring, butl since the
value of the Supervisor slot 1s of Person-Type, ARLO knows to read 1ts value
with a function which looks for people under their personal names (as well as last
names and their names qua description). It finds the unit named Lee, based on
our information, and caches 1t as Kyle’s supernisor. Having this information, 1ot
{voks on Lee’s description for a Hacking slot, and discovers..

The Hacking slot of {#>XYLE} is:
This is justified by:

The Hacking slot of {#>LEE} is: Engineering Design

The To Get Value slot of {#>BACKING} is: #'JYPED-DEFAULTING-CET
The Supervisor slot of {#>KYLE} is: {#>LEE}

The To Default Value slot of {#>HACKING} is:
#>INHERIT-THROUGH- SUPERVISOR-OR- ARLO : ASK-USER -FOR-SLOT-OR-ELSE
The To Get Valus slot of {#>TD-DEFAULT-VALUE} is #' TYPED-DEFAULTING-GET

Engineering Design

As promised, ARLO keeps track of the dependencies - the “assumptions”
of its derivations. In this case, Kyle's hackmg slot depends on his supervisor being
Lee, Lee’s hacking of “Engineering Design,” the mechanism by which the hacking
slot defaults, and the implementation of that mechanism for defaulting. These
four dependencies are summarized by ARLO below. Note that 1f any of them were
to change the “assumed” value of Kyle’s hacking slot would be invalid. Thus, in
the event that any of these values 1s retracted or otherwise invalidated, ARLO
can use its dependency information to make sure that the value just computed 13

retracted and invalidated as well.

K \‘: ‘a.l’q,‘ ¢
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'ty 3.6.2 Dependencies and Decaching
N d
1o The dependencies ARLO recorded for the Hacking slot above allow 1t to keep d
t . :
t: the slot’s value up to date. This 1s neccessary because its value ts cached on the :
:g: ¥ untt, as we can see from its description below:

i} N
1.1: Edating {#>KYLE} >>Describe [Deacribes the unit. |
‘3: X Description of the ARLD unit {#>XKYLE}:
:". Description- The description of KYLE was not provided

l.“ Prototype: {®#>PERSOl }

:!.Ov Prototype 0f: lione

My Creator: Ken Haase

. My File 0f Definition: ARLO: SOURCES; INQUIR LISP
_'“ i My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
W Full Hame: Kyle 0'Shea
’t:‘ \ Hacking: Engineering Design |The hacking siot, cached. |

: : Last Name: 0'Shea

i My Name: #>KYLE

My To Describe Self: #°'LOOK-AT-UNIT

-‘_ My To Print Self: # 'DEFAULT-UNIT-PRINTER

‘:-. Personal lame. Kyle

o Supsrvisor: {#>LEE}

§ . |Kgde’s superwisor, cached also  We won't be asked for it again. |

.{; Editing {#>KYLE} >>Edit

e Yhich slot of {#>KYLE} would you like to edit?Supervisor

o Now let’s go look at Kyle’s supervisor and change his hacking slot. The

;}J change should propogate back to Kyle.14
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oL
Description of the ARLO unit {#>LEE}-
" ’ Descriptaion: The description of LEE waes not provided.
*\j Prototype {#>PERSOI' }
"‘-L Prototype 0f
- Y My Creator Ken Hasse
:i; My File Of Definition: ARLO: SOURCES; INQUIR + >
My Time Of Creation: Saturdsy the twenty-eighth of July, 1983; 12:02:01 am
Editing {#>LEE} >>Describe [Describes the unit.. |
‘ N Description of the ARLD unit {#>LEE}:
‘: ';ll: Description The description of LEE was not provided.
P Prototype {#>PERSOY }
)}
; Prototype 0f:
' My Creator: Ken Haase
My File 0f Definition: ARLO: SOURCES; INQUIR * >
xpt‘;“ My Time Of Creation: Saturday the twenty-eighth of July, 1984; 12:02:01 am
o Full Hame: Pat Lee
Q:. Hacking- Engineering Design
‘:.:, ! The value which Kyle's Hacking ot defauited from |
a-".,‘l: My lLame #>LEE
’ My To Describe Self:  #'LOOK-AT-UNIT
y My To Print Self #'DEFAULT-UNIT-PRINTER
%‘: Personal lame: Pat
24 Wy Supervisor: {#>caLvin}
35
o Now we store a value in Lee’s #>HACKING slot. When reading a hacking slot,
L . . .
" whose value must be a string, ARLO knows to use the LISP readline function.
wl One might tmagine that - if ARLO were connected to a natural language interface
e ~ the same sort of knowledge might be used to generate discourse goals.
[\
)
idley Editing {#®>LEE} >>Set Slot Value
i Yhich elot of {#>LEE} would you like to set?Hacking
. “hat would you like in the Hacking slot of {#>LEE}?The Grateful Dead|A string is read |
*
Wit Now we have given Lee a new hacking slot, and the valve should have re-
‘ '“‘-, placed the old one. We ask for Lee’s description:
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Editing {#>LEE} >>Describe 'Describes the unst
Description of the ARLO unit {#>LEE)}

Descraption The description of LEE vas not provided
Prototype {#>PERSOD} }

Prototype Of

My Creator Ken Haase

My File 0f Definition ARLO SOURCES, INQUIR -« >

My Time 0Of Creation Saturday the twenty-sighth of July, 1984 120201 am
Full lame Pat Lee

Hacking The Grateful Dead  The new value

Ny lame #$>LEE

My To Describe Self 8 LOOK-AT-UNIT

My To Print Self & 'DEFAULT-UNIT-PRINTER

Parsonal lame Pat

Supervisor {#>CALVIN}

If everything worked, our change in Lee’s Racking slot should have invali-
dated the default which ARLO computed earlier for Kyle. We finish editing #>LEE
and return to editing #>KYLE:

Edating {#>LEE} >>Quat

Finiehed editing {$>LEE}

Editing {#>KYLE} >>Descride Descnibes the unst
Description of the ARLO unit {#>KYLE}

Description The description of KYLE was not provided
Prototype {#>PERSO!N }
Prototype Of
My Creator Ken Haase
My File 0f Definitaon MLO SOURCES, IUQUIR . >
My Time 0f Creat:ion Saturday the twenty-eighth of July, 1984, 1202 01 am
Full lame Kyle 0'Shea
[ The hacking slot -- here before — has disappeared
Last liame 0'Shea
My liame $>KYLE
My To Describe Self #'LOOK-AT-UNIT
My To Print Self #'DEFAULT-UNIT-PRINTER
Personal jiame Kyle
Supervisor {#>LEE}

Now we ask for the Hacking slot again, and 1t will be defaulted as before,
except that this time Kyle’s Supervisor slot 15 already known and doesn’t have
to be asked for.
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. Editing {#>XYLE} >>G -- Describe Slot Value
5» Yhich slot of {#>XYLE} would you like to sss”’Hacking
.\_,.: The Hacking slot of {#>KYLE} is. The Grateful Dead
B This is justified by:
"‘s;;' The Hacking slot of {#>LEE} is  The Gratsful Dead
’ ! The To Get Value slot of {#>HACKING} is: # ' TYPED-DEFAULTING-GET
The Supervisor slot of {#>KYLE} 1s: {#>LEE}
s The To Get Value slot of {#>SUPERVISOR} is- #'TYPED-DEFAULTING-GET
g The To Default Valus slot of {#>HACKING} is:
B! o #> INHERIT-THROUGH~ SUPERVISOR-0OR- ARLO : ASK-USER-FOR-SLOT-OR-ELSE
< The To Get Value slot of {#>T0-DEFAULT-VALUE} is: #'TYPED-DEFAULTI!G-GET
Ry - Editing {#>KYLE} >>Describe |[Describes the unit.. ]
i’,,-,g Description of the ARLO unit {#>KYLE}:
S Description The description of KYLE was not provided
. Prototype {#>PERSDN }
b
;F,:. Prototype 0f:
B ';‘,.? My Creator- Ken Haase
At
. _:‘, My File 0f Definition: ARLD: SOURCES; INQUIR + >
., Ay My Time 0f Creation: Saturdey the twenty-eighth of July, 1984; 12:02:01 am
'Y, o Full lame: Kyle 0'Shea
Hacking The Grateful Dead |The new defoult is now cached. |
NS Last lame 0'Shea
-":'_ ) My Hame. #>KYLE
K~ My To Describe Self: #'LOOK-AT-UNIT
L]
.r::_- My To Print Self: #'DEFAULT-UNIT-PRINTER
J’-.y-' Personal lame: Kyle
ot Superviasor: {#>LEE}
oty And now let us set the world back to normal, changing Lee’s Hacking slot
. . .
';i" once more and reinstating the old value on Kule.
N
"\
SO
- Editing {#>KYLE} > Edit
‘ “hich slot of {#>XKYLE} would you like to edit?Lee
K e S ““Lee’ ' isn't the name of a defined slot.
e , .
:.‘_J We accidently referred to the unit to edil, instead of the slot of Kyle we
o .
¥ wished to edit. Fortunately, the unit editor was clever enough to warn us of our
. mistake, but not clever enovgh to see through it.
.
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Did you make a mistake?(Y or !l) Yes

“hich slot of {#>XKYLE} would you like to edit?Supervisor

Editing {#$>LEE} >»>Set

“hich slot of {#>LEE} would you like to set?Hacking

“hat would you like in the Hacking slot of {#>LEE}?Engineering Design
Edating {#>LEE} >>Quit

Finished editing {#>LEE}

The world should be back to normal now...

Editing {#>KYLE} >>G -- Describe Slot Value
Yhich slot of {#>KYLE} would you like to see”’Hacking
The Hacking slot of {#>KYLE} is Engineering Design

And indeed 1t 1s....

This 18 justified by

The Hacking slot of {#>LEE} 1se. Engineering Design

The To Get Value slot of {#>HACKIUG} 1s. # TYPED-DEFAULTING-GET
The Supervisor slot of {#>KYLE} is  {#>LEE}

The To Get Value slot of {#>SUPERVISOR} is. #'TYPED-DEFAULTING-GET

The To Default Value slot of {#>HACKING} is:
#> INHERIT-THROUGH- SUPERVISOR-0R- ARLO - ASK-USER-FOR-SLOT-0R-ELSE
The To Get Value slot of {#>T0-DEFAULT-VALUE} is. # TYPED-DEFAULTING-GET
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3.6.3 Other slots

Edating {#>KYLE} >>Nevr unit ]
vhat unit would you like to edit?Alice

; Description of the ARLO unit {#>ALICE} _
Descriptaion The description of ALICE wvas not provided ‘::-’
Prototype {#>PERSON } P

. Prototype 0f oy

b, My Creator- Ken Haase S

» My File 0f Definition  ARLOD: SOURCES; INQUIR + > -:'t-

, My Time 0f Creation Saturday the twenty-eighth of July, 1984; 12.02:02 am i':".
Fyll Name- Alice Adams o

s Last lame Adams ’ g
My Hame #$>ALICE

. My To Describe Self &’ LOOK-AT-UNIT =

; My To Print Self: ¢ ' DEFAULT-UNIT-PRINTER ’t:
Personal lame: Alice RS
Editing {#>ALICE} >>G -- Deacribe Slot Value .~:
“hich slot of {#>ALICE} would you like to see”’Working In Field "

The Yorking-In-Field slot - as defined on Page 3.8 - 1s the slot compost- .
{ tion of the Hacking slot of ones Supervisor slot. A: before though, it needs to e
. know her supervisor slot in order to default a value. )

“ho 1s Alice hacking for?’Rodgers
The Yerking In Field slot of {#»ALICE} 3s Emctional Analouge Robots

And again, ARLO provides the dependencies of the compulation: -

PR

Thie 18 justified by

The Hacking slot of {#>RODGERS} is Emotional Analouge Robots
The To Get Value slot of {#>HACKING} is &' TYPED-DEFAULTING-GET "
The Supervisor slot of {#>ALICE} 1s  {#>RODGERS}

L)

- ”

. The To Get Value slot of {#>SUPERVISOR} 1e 8 TYPED-DEFAULTIIG-GET -

: The To Default Value slot of {#> ORKILG-I:-FIELD} 1e p\\

! #>THE-VALUE-OF - THE -HACKI5G- OF - TRE- SUPERVISOR- OF .

. The To Get Value slot of {#>T0-DEFAULT-VALUE} is  # TYPED-DEFAULTIIG-GET ?a!.
-

3 =~

A Finally, we ask for Alice’s description again, to s¢€ that the appropriate slot

. ',:" .I‘ 4 -,

has been cached on the unit descripition.
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Editing {#>ALICE} >>Describe [Describes the unat |
Description of the ARLD unit {#>ALICE}

Description The description of ALICE was not provided
Prototype {#>PERSON }

Prototype Of

My Creator Ken Haase

iy File 0f Definitaion ARLO: SOURCES, INQUIR + >

My Time 0f Creation Saturday the twenty-eighth of July, 198«. 120202 am
Full lame Alice Adams

Last lame Adams

My lame #>ALICE

My To Describe Self #'LOOK-AT-UNIT

My To Print Self # ' DEFAULT-UNIT-PRINTER

Personal lame Alice

Supervisor {#>RODGERS}

“orking In Field Emotional Analouge Robots |[The value has been cached

Editing {#>ALICE} > Quit
Finished editing {#>ALICE}
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Ken Haase ,
8!
A
3.6.4 Errors -
]
Back to editing {#>KYLE) Yt
4 Editing {#>KYLE} >>G -- Describe Slot Value f::;
. Which slot of {#>KYLE} would you like to see? Wedging i t
v Q' '
* . . . . J
If you remember the definition on page 81, this slot has a defintion which AN
“defaults” by referring to itself agaan. Attempting to get this slot from a unit will -
recurse fatally 1f a value 1sn’t already available. (In which case that value would ~
simply be returned.) Let’s watch sparks fly. ;::
[ (%,
eyt
! l".".
. >>ARLO-Error I sesm to be fatally recursing on getting the Yedging slot of {#>KYLE}
(Yhile getting the Yedging slot of {#>KYLE}) T
(]
)
_ A description of the current slot operation being attempted 1s always provided oy
i to the user when she 1s asked to handle an ARLO condition. o
& k
GET-VALUE ,
: Arg O (IN-UNIT): {#>KYLE) U
¢ Arg 1 (OF-SLOT): {#>¥EDGING) .j_-
s-A, [RESUME] Perform the operation using subprimitives. :.‘&'
s-B, -7 Print out the current state of ARLD's computations o :
s-C, {ABORT)]. Return to the examining the unit {#>KYLE} 1
»-D Return to Dribbling Lisp Listener
»-E. Return to Lisp Top Level in Lisp Listener 1§ - .;;4'
->¢-7 Print out the current state of ARLO's computations. 0:";
{ ARLO is currently '.l:i
K 3 getting the Yedging slot of {#>KYLE} v
2 vhile trying to compute a default for the ‘edging slot of {#>KYLE} .:|:‘
1 while getting the YWedging slot of {#>KYLE} W
This 15 the trace produced by the HERE function. » 3
3
LY
N )
v -> [RESUME] Perform the operation using subprimitives LY
N {
' - . i
The subprimitives, unfortunately, merely return NIL if a :lot doesn’t enists. -
Since Kyle has no '‘edging slot, the value NIL 1is compuled as onc. But the 'Az
! edging slot requires - as 1t 1s defined on page 81 - a string and ARLO complains wy
aboul this inconsistency. 5}’.
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>>ARLO-Condition: The Wedging slot cannot accept the value NIL
(it isn’'t of type STRING-TYPE)

%hile caching NIL on the Yedging slot of {#>KYLE}
#>SLOT-VERIFIER-FOR-¥EDGING :
Arg 0 (UNIT) . {#>KYLE}

Arg 1 (SLOT): {#>WEDGING}
Arg 2 (VALUE): NIL

s-4, {RESUME}: Accept the value anyvay

8-B, c-?. Print out the current state of ARLO's computations
s-C, [ABORT}: Return to the examimiag the unit {#>KYLE}

s-D Return to Dribdling Lisp Listener

s-E: Return to Lisp Top Level in Lisp Listener 1

->c-? Print out the current state of ARLO's computations
ARLD is currently:

2. caching VNIL on the Yedging slot of {#>KYLE)

1 vhile getting the ¥edging slot of {#>KYLE}

-> [RESUME] Accept the value anyvay

And finally we get a final result, after all of our running around in the error
system.

The Yedging slot of {#>KYLE} is UJIL

This is justified by

The Functional Value slot of {#>DESCHIPTION-OF-YEDGE} is-
#<DTP-COMPILED-FUNCTION YEDGE 21016762>

The To Default Value slot of {®>YEDGING} is: #'YEDGE
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3.6.5 Shadowing Definitions

Editing {#>KYLE} >>Nev unit
¥hat unit would you like to edit? Brian
Description of the ARLD unit {#>BRIAN}

Description The description of BRIAN was not provided
Prototype: {#>“INNER)

Prototype 0Of

My Creator: Ken Haase

My File Of Definition: ARLO: SOURCES, INQUIR » >

My Time 0f Creation: Saturday the twenty-eaghth of July, 1984, 12:02:02 am
Full lams: Brian ¥alking-Song

Last lame: Yalking-Song

My Rame: #>BRIAN

My To Describe Self: #'LO0K-AT-UNIT

My To Print Self: # DEFAULT-UNIT-PRINTER

Personal Name: Brian

Supervisor: {#>cHARO}

Here we ask for the hacking slot of Brian, whose prototype is Uinner. As
defined initially, the Yinner prototype. provides a different definttion of Hacking
from the default. Precisely, 1t asks the user for the hacking slot directly, rather
than first trying to inherit it through the Supervisor relation.

Editing {#>BRIAN} >>G -- Describe Slot Value

Yhich slot of {#>BRIAN} vould youw like to sse?Hacking

“hat is Brian hacking?Intelligent Mystic Systems

The Hacking slot of {#>BRIAN} is: Intelligent Mystic Systems
Thae is justified dy  Ken Haase said so.

Thise catation - referring to myself, the person using the program - 1s recorded
by a dependency record which is a SLOT-CITATION-RECORD, documented in Section
221
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=
"“' Editing {#>BRIAN} >>Describe [Describes the unit |
;l Descraption of the ARLO unit {#>BRIAN}
& xi Description: The description of BRIAN was not provided
:. «{ Prototype: {#>VINNER}
‘:. Prototype 0f:
My Creator: Ken Haase
. My File DOf Definition: ARLD: SOURCES, INQUIR + >
:' ' My Time Of Creation: Saturday the twenty-eighth of July, 1984; 1202 U2 am
[\ Full lame: Brian Yalking-Song
N Hacking: Intelligent Movie Systems |The value has been cached. |
:!' Last liame: Yalking-Song
o9 My lName #>BRIAN
My To Describe Self: #'LOOK-AT-UNIT
't My To Print Self: #'DEFAULT-UNIT-PRINTER
":'l Personal lame: Brian
;:% Supervisor: {#>CHARO}
"
::‘: Let’s look at where Brian’s description got its replacement hacking definition
N - which asked us for a value directly - from. The shadowed definition of hacking
o you remember - from Page 82 - looks on the prototypes of the unit 1t 1s accessing.
Ny So we edit the prototype of #>BRIALL. ..
3
e Editing {#>BRIAN} >>Edit
“hich slot of {#>BRIAN} would you like to sdit?Prototype
o Description of the ARLO unit {#>WINNER}: 4 |
:’;0.: Descraption: Somone who doesn’'t always follow their supervisor.
;:'.1 ‘ Prototype: {#>PERSON}
Wl Prototype 0f {#>BRIAN}
:l. My Creator Ken Haase
Ly My File Of Definition: ARLO:. SOURCES, IKQUIR -+ >
My Time Of Creation Saturday the twenty-eighth of July, 1984, 12:02:00 am
iy My lame #>IINER
i \y Specific Type {#>%INUER- TYPE)
x Vy To Describe Self #'LOOK-AT-UNIT
A My To Print Self #'DEFAULT-UNIT-PRINTER
;,‘ Shadowed Hacking Definition. {#>HACKING-0}
[And here 12 the shadowed definttion of Hacking. |
\J
: We can look deeper into this new definition of hacking by editing its descrip-
4:. tion. Every ARLO :slot, since it 1s explicitly described in ARLO, 15 accessible in
é::I this way.
5

.e
§ a1
K"

h?:* ‘

ol N AN I P R L L PR LA CRES “u
AR LT ALY AT . $.0% 4 3949
I A e AT A i FaARiAL

9K : 0
&rav‘.“:?"—- "e‘ﬁ’.». ¢

A .NI.I.Q LW

~ Y e

I X X K

parw—

PRt

-

- -

L.

Y X X _X)

N

L}
U
by A l.n‘\'



-@f e

Rt 2

-

o

-~

-
-

.
-

>
4

S

ARLO

Editing {®>BRIkN} >>Edit
Yhich slot of {#>BRIAY} wvould you like to edit? Shadowed Hacking Definition
Description of the ARLO slot ({#>HACKING-0}:

Description The description of HACKING-O vas not provided
Prototype {#>HACKING)

Prototype 0f:

To Default Value: ASK-USER-FOR-SLOT

Makes Sense For: {#$>¥INLER-TYPE}

Dats Type {#>STRING-TYPE}

My Creator Ken Haase

My File 0f Definition- ARLD: KBases; INQUIR.BIN.NEWEST

My Time Of Creation: Saturday the sixth of April, 1985; 9:11:58 am
Actusl Get Value: #'CHECK-VALUE

My lame #>HACKING

My To Describe Self 8 'LOOK-AT-SLOT

My To Print Self #'DEFAULT-UNIT-PRINTER

Te Cache Valus # TYPED-CACHE

To Describe Value (LAMBDA (IGHORE) IGIORE)

To Get Value: # TYPED-DEFAULTING-GET

To Help Find Value #'EVAL-READ-AS-ESCAPE

To Print Value #'GPRILTC

To Prompt For Value #'CUTE-PROMPT-FOR-VALUE

To Read Value: #'READLIINE

To Verify Type

#'CORE ' INQUIR SLOT-VERIFIER-FOR-HACKING-O
Editing {#>HACKING-0} >>Quit

Finished edating {#>HACKING-0}

Editing {#>VINNER} >>Quit

Finished editing {#>¥INNER)}

Editing {#>BRIAN} >>Quit

Finished editing {#>BRIAI}

Back to editing {#>KVLE}
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A 3.6.6 Modifying our language s
.5'&' Editing {#>KTLE} >>Nev unit
‘:l' Yhat unit would you like to edit?Alice \
1“5 Description of the ARLO unit {#>ALICE}: 3
3‘5 Description: The description of ALICE was not provided. ]
:.; Prototype: {#>PERSON }

* Prototype 0f:

«*’t My Creator: Ken Haase i
' My File 0f Definition: ARLD: SOURCES; INQUIR « > )
D0 My Time 0f Creation:
;"" Saturday the twenty-eighth of July, 1984; 12:02:02 am s
Ky Editing {#>ALICE} >>Describe [Describes the unit.. | :
Yo Description of the ARLO unit {#>ALICE}:

Description: The description of ALICE was not provided.
!':: Prototype: {#>PERSON } ¢
v Prototype 0f: )
g.‘ My Creator: Ken Haase )
}l' My File 0f Definition: ARLO: SOURCES; INQUIR =* > 1
Q:b My Time 0f Creation: Saturday the twenty-eighth of July, 1984; 12:02.02 am :
e Full lame: Alice Adams
. Last lame: Adams Y
;,‘ My lame: #>ALICE 3
W My To Describs Self:  #'LODK-AT-UNIT J
b4 My To Print Self: #'DEFAULT-UNIT-PRINTER
¥ Personal Hame: Alice h
i Supervisor: {#>RODGERS}

Yorking In Field: Emotional Analouge Robots
Ty | This is the value defaulted eartier sn the ezample (Section 3.6.8, Page 43). | .
‘ -
J) . ~- :
'Q Now we will change the definition of how defaults for Yorking-In-Field "

W should be computed, and this modification will make previous derivations - based
-R on a different definition - tnvalid.
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I’“
Editing {#>ALICE} >>Nev unit "
i;' Yhat unit would you like to edi1t?Working in Field S
“»:Q Description of the ARLO slot {#>YORKING-IN-FIELD} .)'
!: Description This 18 the field a person 1s vorking an .{
{:‘ Prototype {#>PERSOL -SLOT} "J’f
o Prototype 0t x
To Default Value -~
.. #>THE-VALUE-OF-THE -HACKING- OF-THE-SUPERVISOR- OF 3
% Makes Sense For {#>PERSO!I- TYPE } ..;.:
g Data Type {#>STRING-TYPE} X
My Creator Ken Haase : s
:t My File 0f Definition ARLO  SOURCES, INQUIR - > of
s My Time 0f Creation Saturday the twenty-eighth of July, 1984; 12:01 58 am i
Actual Get Value #'CHECK-VALUE -
WA High Level Definition #'CORE INQUIR THE-VALUE-OF-THE-HACKING-OF- THE-SUPERVISOR-OF 3
? My lame #>YORKING-IN-FIELD :‘r
M My To Describe Self  #'LODK-AT-SLOT ¥
Q: My To Print Self # DEFAULT-URIT-PRINTER )
i) To Cache Value ' TYPED-CACHE i
' To Describe Value (LAMBDA (IGNORE) IGNORE) L
. To Get Value # TYPED-DEFAULTING-GET
'« To Praint Value #'GPRINTIC M.
\ To Process Slot #'DEFAULT-PROCESS-SLOT "‘-
i\ To Verify Type #'CORE INQUIR SLOT-VERIFIER-FDR-“ORKI!G-IN-FIELD i
B W
: We define the new defaulting method by using the automatic coder SLOT-COMPOS]TION.
Just as we defined #>HACKING-0, we define the new #>WORKIHG-IH-FIELD to inherit
e from the #>HACKIIG slot two supervisors away. :\
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Editing {#>YORKING-IN-FIELD} >>Set Slot Value

Yhich slot of {#>YORKING-IN-FIELD} would you like to edit? To Default Value

Yhat value would you like in the {#>To-Default-Value} slot of {#>WORKING-IN-FIELD}
(Slot-Composition (list #>Hacking #>Supervisor #>Supervisor))

Editing {#>WORKING-INI-FIELD} >>Describe

Description of the ARLD slot {#>WORKING-IN-FIELD}:

Description: This is the field a person is working in.

Prototype. {#>PERSCII-SLOT }

Prototype 0Of

To Default Value:
#>THE-VALUE-OF-THE -HACKIIG- OF - THE-SUPERVISOR - OF - THE-SUPERVISOR-0F

Makes Sense For {#>PERSON-TYPE}

Data Type. {#>STRING-TYPE}

My Creator: Ken Haase

My File 0f Definition: ARLO: SOURCES; INQUIR + >

My Time 0f Creation: Saturday the twenty-eighth of July, 1984, 12:01:58 am
Actual Get Value: #'CHECK-VALUE

High Level Definition:
#'CORE ' INQUIR THE-VALUE-OF-THE-HACKING-0OF-THE-SUPERV ISOR-OF~THE-SUPERVISOR- OF
[ The new high level definstion, all compiled.. |

My lame #>YORKILG-IN-FIELD

My To Describe Self: #'LO0K-AT-SLOT

Ny To Prant Self: # DEFAULT-UNIT-PRILTER
To Caihe Value #'TYPED-CACHE

To Decache Value #'REMOVE-VALUE

To Describe Value: (LAMBDA (IGHORE) IGNORE)
To Get Value #'TYPED-DEFAULTING-GET
To Print Value: #°'GPRINTC

To Process Slot # 'DEFAULT-PROCESS-SLOT

To Verify Type:

#'CORE INQUIR:SLOT-VERIFIER-FOR-%ORKING-IN-FIELD
Editang {#> ORKING-II-FIELD} >>Quit

Finished editing {#>“ORKING-IN-FIELD}

Back to editing {#>ALICE}

Since we changed the way Jorking-In-Field 1s defined, any values which

description to see if this 15 indeed the case.

were defaulted in the old way should be invalidated. Let’s look back to Alice’s
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- Editing {#>ALICE} »>Describe
-;"'!; Description of the ARLD unit {#>ALICE}:
;;';& Description: The description of ALICE was not provided.
:: g Prototype: {#>PERSON }
l'I:'. Prototype 0f:
;:3::: My Creator. Ken Haase
' My File 0f Definition: ARLO: SOURCES; INQUIR =* >
,—f" My Time 0f Creation: Saturday the tventy-eighth of July, 108%; 12:02:02 am
f‘: . Full Name: Alice Adams
i' : Last Name: Adams
;‘, N My lame: #$>ALICE
S:,, My To Describe Self: #°'LOOK-AT-UNIT
¢ My To Print Self: #'DEFAULT-UNIT-PRINTER
Personal lame: Alice
’y:;‘e Supervisor: {#>RODGERS}
o |And the cached Yorking-In-Field has indeed disappeared. |
A
":S:E Let’s regenerate 1t.
Rar
Aty Editing {#>ALICE} >>G -- Describe Slot Value
gt Yhich slot of {#>ALICE} vould you like %o see? Working In Field
A
.s* : The Yorking In Field slot of {#>ALICE} is: Robots
!'::
0 e ) o . .
.:g'l‘i:| You can see from the justifications of the value that it did the right thing,
L, . B .
looking at Rodger’s supervisor and getting her Hacking slot.
o
Y.\
) This is justified by:
The Hacking slot of {#>CALVIN} is: Robots
Y The To Get Value slot of {#>HACKING} is: #'TYPED-DEFAULTING-GET
St The Supervisor slot of {#>RODCERS} is- {#>CALVIN)
The Supervisor slot of {#>ALICE} is: {#>RODGERS}
.
‘6;.' The To Get Value slot of {#>SUPERVISOR} is: #'TYPED-DEFAULTING-GET
The To Default Value slot of {#>YORKING-IN-FIELD} is:
Lk
‘|;: o] #>THE-VALUE-OF- THE-HACKING- OF - THE-SUPERVISOR- OF - THE- SUPERVISOR-OF
'1‘.' The To Get Value slot of {'>T0'DEF‘ULT-VALUE} is: #'TYPED-DEFAULTING-GET
b
RO
Wt And finally, we check that the value we have generated has been appropriately
. cached....
ek
2%
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Ken Haaze

Editing {#>ALICE} >>Describe
Description of the ARLO unit {#>ALICE}
Description The description of ALICE was not provided
Prototype {#>PERSOl }
Prototype Of
My Creator. Xen Haase
My File Of Definition: ARLD: SOURCES,; INQUIR ¢« >
My Time 0Of Creation Saturday the twenty-eighth of July, 1984, 12:.02 02 am
Full lame Alice Adams
Last liame: Adams
My Name #>ALICE
My To Deacribe Self. #'LOOK-AT-UNIT
My To Print Self # DEFAULT-UNIT-PRINTER
Personal lame: Alice
Supervisor: {#>RODGERS}
Yorking In Field Robots
lAnd, of course, the value is cached again. |
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ARLO Ken Haase

Chapter 4
An Example: Introspection

This chapter describes an automatic explanation system — implemented in and for ARLO —- that examines
a collection of ARLO units and generates a structured English explanation of them. These units would
a... typically describe some particular domain or embedded representation language, and be organized to aid

(1Y

e users or programniers introducing themselves to the domain or language. The system analyzes a collection of
::\‘: units by trying to extract their salient features as an organizational focus for its explanation. Unfortunately,
bt~ . . S . oo
Ius since the text it generates is primitively template driven (currently), the system does not — at this time —
R, - ) . T .
i use these extracted features as the focus for discourse or individual explanations.
This is an example of the sort of general self-referential facility which users may implement in ARLO.
‘:' With something comparable to this explanation system, a user need merely point at some collection of
o N-’b units and ask “Explain this” to acquire an organized explanation capturing whatever special “observable”
{ .
b ._: structure the units possessed.
20
B o .
uey 4.1 Explanation Structures
KRYY The explanation system takes the collectiorn of units handed to it and generates another set of units called
o an ezplanation structure describing them. This structure is a hierarchy of explanations, each level of which
~ P g y p
:.,I partitions the set of units over one of a number of possible relationships. These possible relationships are the
ossible structural slots of a given explanation, and defaults to the union of a collection of system defaults
; p p y
cally and the slot descriptions in the set of units being explained.
The explanation process takes the set of units being explained and generates a partion of it for each
':I'::E structural slot. The resulting partitions — one over each structural slot/relation — are then compared,
”‘h::: and the slot whose partition contains the largest subgroups is selected as the focus of the explanation. The
Rl intuition this supports ix that the organizational focus for an explanation of some collection of units should
e be the relation which organizes those units into the biggst “chunks”™. If a user doesn’t like the partition chose
Rt at one level though. the explanation structure can be directly altered to fucus on another divisive relation.
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ARLO Ken H:iase

For each of the subgroups in the partition selected, a sub ezplanation is generat -d. whose relevant unitz
are the elements of the subgroup. and whose structural slots are inherited from the original explanation,
modulo the slot partitioned over. The explanation mechanism then recurs on theze sub explanations. stopping
when the section size - the nummber of uniiz being explained by a given chunk of structure -- drops helow
some explanation-wide threshold for specialization of sections.

The explanation structure produced by this process may then be passed to a text-generator. a graphical
exploration environment. or even a theory-making mechanism trying to classify regularities among generated

or accuinulated ARLO structures.
4.2 Textual Generation

Textual generation from the explanation structure currently produces organized and formatted !5 output,
appropriately sectionized and structured so as to produce readable, structured output. On both the level
of describing individual units and organizing explanations into sections, the documentation process i data-
directed by reference to descriptions in ARLO.

For individual units, their english explanation 1s provided by calling a LISP function on the unit’s
#>'y-Scribe-To-Document-Sel? slot. which is inherited (by default) over the #>Prototype relation. (Of course
thiz inheritance mechanism may be shadowed arbitrarily.) These inherited description functions will produce
useful - for human consumption — descriptive text. Slot definitions, automatically coded LISP functions,
ARLO coders. and user defined functions are all described in different ways so as to provide appropriate
information to the user. In a more advanced form, the documentation system might take into account
interests of the user, information already related, and “trivial” aspects of the description (for instance,
expected colors, planets, languages, etc).

For every node in the explanation structure which has a relational focus — which partitions a set of
units over some particular slot — the manner of sectionization (determining section titles, order of sections,
dizcourse restrictions of sub-sections, etc) is determined by the slot being partitioned over (taken as the
orgamizational focus of the explanation). For instance, relations which are posited by the user as hierarchical
1% are ordered into sections by a breadth first enumeration of the hierarchy they define. Other slots may
organize their documented partitionz on ages, execution speeds, size, or frequencies of appearance of their

as=zociated values,
4.3 Graphical Presentation

The explanation structure generated by the system can also be hooked up to a graphical interface for
examining nested structures. Particularly, ARLO’s generated explanation structure has been hooked up
to the Information-aldo. a gestural interface for manipulating abstract objects in an wnformation space.

This information space 15 constructed of interconnected rooms containing objects with various properties

e
.

I5The text produced is either formatted for the terminal or (if going 1o « file) for some appropriate text farmatting

Progrian.

2P S

Y0We . ld imiagine the Jdisc.overy -f such relational praperties (like heing hierarchical) being made by an intel-

ligent program generalizing from examples. [Cha83) describes a systews which does just this =ort of relational

cenerclization from exoanples in the “world™,
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Units with a Prototype slot of {#.PERSON}
? cory

go..r Te An Exglenstion Gf The lsquir Exessls.
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Figure 4-1. Vsing the Infarmation Walda in the INQUIR museum structure.
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and powers. A user wieldz the mformation waldo to explore this network of rooms and manipulate their
contentz, moving from place to place and description to description by physically immediate gesture and
action.

A user moves a hand shaped grip acro== a flat surface to move a hand on the screen and “information
waldo™ existing in an abstract “information space” - from location to location. Stylized gestures of grazping,
pointing. or squeezing are detected by the grip and cause the haud on the screen to mampulate the object=
1t 12 moving anong. To examine an ARLO description with the imformation waldu. you merely pick up the
roll-shaped description and squeeze it: its relations leap out from itz body: to retract a relation, you rub out
the label attaching it to the description; to move from one room to another. simply put your hand through
an open door. and the new room opens wtself up on the display. This gestural interface to ARLO s used
ax the basis of an explanation-based browser for ARLO structures. Structured explanations of collections
of ARLO units are used in the design and construction of multi-room museums portraying and describing
them.

The explanation structure produced for ARLO descriptions can generate a museum of the unitz ex-
plained: this museum consists of a network of rooms reflecting the connections and groupings of the expla-
nation structure. A user exploring some particular implementation or representation with this facility can
use spatial metaphors to organize her understanding. In a more advanced form, a sophisticated interface
would design the muszeum with the explicit goal of providing such metaphors and mnemonic arrangements.
Figure 4-1 shows the museum interface being used to explore the INQUIR knowledge base of the previous

example.
4.4 An Explanation of the INQUIR system

The following is an automatically generated explanation for the INQUIR example of the previous chapter.
It was produced by applying the above explanation system to the in-core implementation of the INQUIR
gystem (determined by all of the units in the INQUIR knowledge base).

These units are best organized by the Prototype relation.

4.4.1 Units without any prototype.

Person is a protypical person description in the “INQUIR"™ knowledge base. This i1s the prototypical
person.
1.4.2 Units with a prototype of Hacking

Hacking (as defined by HACEING-0) is a slot which accepts values of type String Type and makes senze

for unitz of type Winrer Type. The description of HACKING-0 was not provided. Its value defaults by the
function ARLO:QUESTION-6, whicl:

Ak the user a question by:
(FORMAT QUERY-1O “What 15 a hacking on®” (GET-VALUE UNIT #>PERSOUAL-AME)

1.4.3 Units with a prototype of Hand Coded Function
Thewe ninit- wre he<t arganized by the Prototype relation.
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ARLO Ken Haase

4.4.4 Units without any prototype.

Person is a protypical person description in the “INQUIR” knowledge base. This is the prototypical
person.

4.4.5 Units with a prototype of Hacking

Hacking (as defined by HACKING-0) is a slot which accepts values of type String Type and makes sense
for units of type Winner Type. The description of HACKING-0 was not provided. Its value defaults by the
function ARLO:QUESTION-6, which:

Ask the user a question by:

(FORMAT QUERY-10 “What 1s a hacking on¢” (GET-VALUE UNIT #>PERSOUAL-IAME )
4.4.6 Units with a prototype of Hand Coded Function

DATA-TYPE-GENERATOR is a user defined lisp function which has an argument list of {UNIT SLOT), and 1s
documented as: “Looks through the prototypes of a slot for 1ts data-type”.

DEFAULT-DESCRIPTIO!N-GEIERATOR is a user defined lisp function which has an argument list of (IN-UNIT
IGNORE), and is documented as: “This generates a description ezcuse.”.

FI:D-HACKING-SLOT is a user defined lisp function which has an argument hst of (UNIT IN-SLOT), and
is documented as: “Looks for a replacement hacking definition tn a persons prototypes.”.

GENERATE-EXPLANATION-TITLE is a user defined lisp function which has an argument list of (EXPLANA-
TION IGNORE), and is documented as: “Generates an title for a qiven ezplanation.”.

TO-GEUERATE-LAST-HAME is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Ertracts a person’s last name from her full name.”.

TO-GEUERATE-PERSONAL-IAME is a user defined lisp function which has an argument list of (UNIT IG-
NORE]), and is documented as: “Eztracts a person’s first name from her full name.”.

VEDGE is a user defined lisp function which has an argument list of (UN SL), and is documented as:
“Recurses infinitely.”.

4.4.7 Units with a prototype of Person Slot

Full-:ame is a slot which accepts values of type String Type and makes sense for units of type Person
Tuype. This is the full, formal name of a person. Its value defaults by the function ARLO:QUESTION-3,
which:

Ask the user a question by:

(FORMAT QUERY-]O “ & What 1s the full name of the person described by a*™ UNIT)

Hacking is a slot which accepts values of type String Type and makes sense for units of type Person Tupe.
This is what a person is hacking on. Its value defaults by the function ARLO:TRY-AND-TRY-AGAIN-1,
which:

Tries to compute a value by two distinct methods:

Searches through the CORE:INQUIR.SUPERVISOR :lot: of a unit for a valuc.
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. Ask the user a question by:

0 (FORMAT QUERY-10 “What 1s a hacking?” (GET-VALUE UNIT #>PERSOUAL-1IAME) .
.,.'“Q' Last-llame is a slot which accepts values of type String Type and makes sense for units of type Person ’,
)-: Type. This is the last name of a person. Its value defaults by the function ARLO:TO-GENERATE-LAST- .
NAME, which: v
o] Eztracts a persor’s last name from her full name. '
Y Personal-lame is a slot which accepts values of type String Type and makes sense for units of type Person Z
':: Type. This 1s the informal name of a person. Its value defaults by the function ARLO: TO-GENERATE- R
8 PERSONAL-NAME, which: .,
’:! Eztracts a person’s first name from her full name. 4
[} . )
v Supervisor is a slot which accepts values of type Person Type and makes sense for units of type Person

. Type. This is the supervisor of a person. Its value defaults by the function ARLO:QUESTION-4, which:

[\ -
My Ask the user a question by: ‘
v: (FORMAT QUERY-10 “ &Who 1s a hacking for?” (GET-VALUE UNIT #>PERSO!AL-UIALE) h!
o4 *
‘:l' wedging iz a slot which accepts values of type String Type and makes senze for units of type Person ¢
:!, Type. This breaks. Its value defaults by the function ARLO:WEDGE, which: ot
. Recurses infinutely. v
AL Working-In-Field is a slot which accepts values of type String Type and makes sense for units of type }'
1 "1\': Person Type. This is the field a person is working in. Its value defaults by the function THE-VALUE-OF- N
:r.‘,. THE-HACKING-OF-THE-SUPERVISOR-OF, which:

L5 Gets the CORE:INQUIR:HACKING of the CORE:INQUIR:SUPERVISOR of some unat. 5
, 4.4.8 Units with a prototype of Person h
ol o)
a‘i: " These units are best organized by the Supervisor relation. )
4 ¢
,'.h: 4.4.8.1 People without any supervisor 3
= Susan Calvin is working on Robots. -
e 4.4.8.2 People working for Susan Calvin b
y Alice Adams iz working on Robots for Susan Calvin. ‘
N Elizabeth Charo is working on Cognitive Fundamentals for Susan Calvin. )
b, Pat Lee iz working on Engineering Design for Susan Calvin. :
' Robert Rodgers is working on Emotional Analouge Robots for Susan Calvin. .
i: 4.4.8.3 People working for Elizabeth Charo
N g
:; Arthur Pendragon is working on Fantasy Games for Elizabeth Charo. o
A 4.4.8.4 People working for Pat Lee K
s Kyle (P’Shea is working on Engineering Design for at Lee. 3
N ]
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4.4.8.5 Units not classifiable by Supervisor

Winner is a protypical person description in the “INQUIR™ knowledge base.
always follow their supervisor.

4.4.9 Units with a prototype of Slot

Somone who doesn’t

Person-Slot is a slot which accepts values of type Any Type and makes sense for units of type Person
Type. This is the prototypical slot which attaches to people.

4.4.10 Units with a prototype of Shadow Slot

Shadoved-Hacking-Definition is a slot which accepts values of type Slot Type and makes sense for units

of type Slot Type. This is a shadowed definition for hacking. Its value defaults by the function ARLO:FIND-
HACKING-SLOT, which:

Looks for a replacement hacking definition in a persons prototypes.

4.4.11 Units with a prototype of Type

Person-Type specifies a class of LISP objects which are classified by Unit-Type and which additionally
satisfy the predicate TEST-4 (documented as “An arbitarily hairy test.”). This is a type satisifed by any unit
inheriting from Person.

Vinner-Tyr  specifies a class of LISP objects which are classified by Unit-Type and which addition-
ally satisfy the predicate PROTOTYPE-OF-WIINER? (documented as “Checks to see if a unit tnherits from
CORE:INQUIR:WINNER via CORE:PROTOTYPE.”).

This is a type satisifed by units inheriting (via
the Prototype relation) from the unit Winner.

4.4.12 Units with a prototype of Winner

Brian Walking-Song is working on Intelligent Mystic Systems for Elizabeth Charo.
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" The preceding chapters may have seemed like an atiempt to ‘sell’ ARLO as a panacea for all one’s rep- N
-I_' resentation problems. Unfortunately, when pushed to the limit, ARLO broke down for fairly fundamental
'}. reasons. This conclusion examines those reasons and presents arguments for which of ARLO’s ideas are N
R AN worth keeping in new implementations, and which caused basic problems. :
: The version of ARLO described here was developed largely in the summer of 1983 and the spring of 1984. ,
In the fall of 1984, a discovery program implemented in ARLO {Cyrano-0) acheived about half of the results
h:. of AM and Eurisko in elementary mathematics, discovering the notion of number and synthesizing operations
:::’ such as multiplication over numbers. Due to an insufficent theory for the representation of inverses, the step .
::l‘ to factorization and AM’s subsequent discoveries in elemientary number theory were not acheived. However, ;
:‘:! this work did reveal some fundamental properties of discovery programs, which are described in {Hua86b'. N
%1 . Lo . . .
' At the same time that the initial development of Cyrano-0 was proceeding, Dave McDonald and his
- students at UMASS-Ambherst were using ARLO as the representational backbone for generating English text
:::- (using McDonald’s MUMBLE [McD383]) for an ‘intelligent eucyclopedia. This work is described in [MP34l. "
Fali . . R R . .
.!:" Implementing Cyrano-0 in ARLO revealed a variety of cumbersome properties of ARLO: in the late '
f:‘; winter and early spring of 1985, an effort to reimplement ARLO was undertaken. The key points of this ¢
#1,
o implementation (in particular its differences with respect to the ARLO described here) are presented below. :
A manual for this version of ARLO iz available as [Hausta . Work with this new ARLO, however, revealed
,.: deep problems (for purposes of automated discovery programs) in the ‘frame-slot’ orientation of ARLO. .
Bh These problems, broached in detail in [Haagtc!, are also sketched below. .
‘a Despite these criticims, many of the ideas heliind ARLO are still neccessary constituents of Al languages. .
3 The ability to refer to abstract descriptions of properties allows programs to easily use meta-knowledge in s
#,
. describing their own constructions. In particular, knowledge about the semantic restrictions on properties )
oy allows a program to nnderstand its own representation in a general way.
L]
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" 5.1 Flaws in ARLO
g:‘&;.: In developing Cyrano-0, ARLO was found cumbersome for a variety of reasons. Some of the reasons are
':1:‘ endemic to RLL’s in general and will be described in Section 5.2, others are particular to the implementation
' . . . . . .
«:::.0 described in the preceding chapters. These problems are the topic of this section.
;;:‘:0: Most of the problems in using ARLO were not real problems of expressiveness; since a user could encode
e arbitrary patterns of activity into LISP procedures. ARLO was arbitrarily expressive in a weak way. The
y y y exp. Y
o problems were rather problems of perspicuity; in order to say certain things that one wished to say, it was
::| " neccessary to descend into LISP. The magic grab-bag of LISP extensions became a cloak over the operation
:|: 2 of the system, requiring that each modification and analysis module have special properties for special casing
?!’\‘;}" various opaque extensions of ARLO.
£ )

RIS This problem revealed itself in two particular components of ARLO: the dependency network and the
accretion of slot behaviours. In each of these, the usefulness and extensibility of the module was hampered by

,:';.:, the lack of sufficiently explicit representations of ARLO’s implementation; the module had to be extensively
;,:5 ' special-cased to handle opaquely distinct representational constructs.
;5::': 5.1.1 Flaws in the Dependency Network
Ao
‘M:! The dependency network, implemented in LISP Machine flavors, suffered from a variety of laws. Most had
Vi to do with the opaqueness of the dependency implementation; user interface utilities, debuggers, and special
Tl network updating code had to deal with the vagaries of message passing in LISP as well as ARLO’s unit-slot
;‘ :’ representation. There was also the familiar crossbar problem of introducing new sorts of dependencies; in
s' order to introduce a new type of dependency, it was neccessary to determine the interaction of the new
é“_'&' dependency type with all existing dependency types and tools. The standard protocol for invalidation helps
' this process, but managing details is still difficult. In particular, a user interface must special case its
y 5’ presentations for each different sort of dependency.
;"1; The general result of these opacities in the dependency network is the same as opacity anywhere; a
AN significant increase in the amount of LISP code and programming required rather than a modest increase in
‘,s“f’ the amount of specified representation. We would like to be able to extend and use the dependency network
W { in much the same way as we use ARLO units. Unfortunately, dependency records are not units but are
oy special purpose LISP data structures encumbered with methods and procedural semantics couched in LISP
B ' Machine LISP.
‘,ss:, : The obvious solution to this, implemented in |Ha286a), is to make dependency records into units. In
‘”“ {Haa86a] the values of slots may actually be ‘value descriptions® which go through another level of interpre-
~‘:t:0:p tation to get ‘actual values’, but which provide useful information about the status of the value (where it
e came from, how reasonable it is, etc). These values are similar to the ‘active values’ of Loops |BS83] CYC
; !' (LSP85]; the are annotated values about which arbitrary properties may be stated or inferred.
f: 5.1.2 Flaws in Combining Slot Actions
)
f‘ A The flaws described in this section arise from ARLO’s answer to the question: “How do we add new be-
Ll haviours to a slot or type of slot™ In ARLO, the way to add behaviours is to write LISP code which will
“ execute the behaviours. The way to maodify behaviours (mucl simpler) iz to simply use one function instead
.:% :
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e of another as one slot of the abstract slot description being modified. This is made possible by the use of
A reflexive operators. For adding behaviours, the presence of reflexive operators makes writing general code
«"a simpler; we may simply say “do the inversion side-effects of the slot” rather than having to specify whatever >
: particular function implements “do the inversion side-effects of the MOTHER slot.” However the problem is ':
: that new behaviours — specified in LISP — the become largely opaque to the other behaviours and functions ';
K of the system. A
The one point where this problem became most obvious in ARLO was in attempting to maintain a
* distinction between ‘syntactic’ and ‘semantic’ information about slots. For instance, to implement many- byt
to-many relations with slots, the values of slots must be interpreted as multiple values; the content of a _
E ..Q slot is then (say) a list. But the semantic restrictions placed on a slot (properties like Makes-Sense-For and 3
’:‘1 Data-Type) should apply to the individual elements of the list, rather than the list itself. This distinction {
(neccessary due to the focus of ARLO on single-valued slots!7) is impossible to patch by using prototype
W inheritance for abstraction, for we wish to speak of semantic AND syntactic inheritance. Thus we can
say that the Children slot is syntactically a set and semantically only accepts human beings on both ends it
\ (as attachement and value). We wish these properties to inherit differently. In ARLO, however, this was ‘
W impossible. |
N The solution to this particular problem in [Huag6a] is to simply have two different inheritance relations 2'
and two distinct levels of operation for fetching slots: an implementation level of accessing a slot and an
" interpretation level of getting slots. The first level is a ‘syntactic’ level; the second level is ‘semantic.’
";- This solution is effective but introduces some problems of its own. In particular, though we would :
:-:: like ‘syntax’ and ‘semantics’ to be orthogonal, they turn out not to be. When a new syntactic or semantic ,
-;,” primitive is introduced into the language, provision must often be made in the ‘other half’ of the implemen- .

v tation. This is better than in the implementation described in this document (where adding a non-primitive
. construction involves combining LISP code from several places) but still not ideal. An argument that this
; problem is endemic to RLLs is offered in Section 5.2. :
1 5.2 Why RLL’s are no good E
4 ,
9a All of the problems described in the previous section arise from the opacity of extensions to the RLL. These )

opacities result from the inclusion of arbitrary LISP code in the specification of slot behaviours. I each case,

A in {Hau80a' the problem was resolved by factoring out the LISP code into primitives in the representation. )
o Thus the methods for handling dependency propogation were assigned to properties of value descriptions and .
4‘2 the discinction hetween syntactic specification and semantic specification moved from implicit specification “
:2' in LISP code to a distinction between hierarchies in the representation. We might hope that -- given enough v

N such migrations — that the right ‘primitives’ would be found to avoid any need to escape to LISP. <
s Unfortunately, we already know — in some sense — what this ‘right’ set of primitives should be: it's
);:: called a programming language. Users of RLLs are forced into LISP {and therefore weaken the utility of the
O:: RLL) when they need to do something which the RLL (as given) cannot adequately express. A sufficently
::'Q . powerful RLL 1 a full- ﬂedqen’ programming language. It must he - however - a programming language ':

— — N {J
- 17ARLO nnght he crmuzed fwl thl‘ basic azsumption, but the problem is that any buasic |~~umptun of the tan- ;
Y cnage may be short circuited” caly by descending inte the mrky «pagueness of LIS o de. >
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which has a manipulable and perspicuous representation of itself. ‘Limited RLLs,” like ARLO and the
language described in |Haa86ai, are useful for particular applications but eventually lose generality when
users require the full power of a programming language. For instance, slots defining individual slot actions

are fine until one wishes to compose new actions to existing ones. At this point, since the notion of a slot is
a weakened and limited version of the notion of a function, to define the composition of slot executions, the
user must escape to LISP where she can use the full notion of functional composition and sequencing.

The solution to this problem, as I suggest in [Huaa86c], is to develop a programming language with the
self-descriptive capacity of RLLs. In brief, this language is a higher order language similar to FP [Bac78] with
mferred typing of functions (much as in ML [Mil78] and the addition of a special class of functions — called
mutable mappimgs — which replace the functionality of slots and properties. The function MAKE-MUTABLE
constructs a mutable function which is simply a pairwise mapping of objects. The function MUTATOR returns a
procedure for storing mappings for the mutable function. For example, the following uses mutable operations
to define the COLOR function and set the color of a few objects.

(define color (make-mutable))
COLOR
(color 'apple)
<UNKNOWN> ; Indicates a value with no mapping.
(define define-color! {mutator color))
DEFIIIE-COLOR
(define-color! ’'apple 'red)
<UNKNOWN> ;| the previous return value.
(define-color! ’orange 'orange)
<UNKNOWN>
(color 'apple)
RED
(color ‘orange)
ORAIIGE
These mutatable functions can be combined with higher order operators, like COMPOSE or RESTRICT-RAIGE.

Here we defined a special subset of colors and compose this with a class of fruits:

(define real-colors (set-of '(red green blue yellow orange pink)))
REAL-COLORS ; The value of thiz is a type.

(define real-color (restrict-range color real-colors))

REAL-COLOR

(define fruit (make-mutable))

FRUIT

(define fruit-color (compose fruit real-color))

FRUIT-COLOR

So defined, we can et and accesx the color of fruits by nsing the procedures we have defined and then
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PR

associated mutators.

((mutator fruit) ‘'apple-tree ‘apple)
<UNKNOWN>

(fruit-color 'apple-tree)

RED

Knowledge about procedures can be accessed by other procedures, in particular, DOHAII' and RANGE.

(domain color)

# [AUYTHING] :
(range color) ;
# [ANYTHING) X

(range real-color)
#[One of RED GREEN BLUE YELLOY ORANGE PIlK]
(range fruit-color)
#[0ne of RED GREE! BLUE YELLOY ORANGE PINK]

By defining all of ones representational constructs in this way, the expressive power of our representation
language is nearly equal to that of LISP-like languages while still giving us the power of an RLL.

5.3 Why RLL’s Aren’t So Bad

In the previous section, an argument was introduced for a new sort of representation language language, t
criticizing fundamental flaws in most representation language languages to date. An important point to ;
make however, is that the criticism applies primarily to programs which must learn by accquiring new
representations and definitions. For implementing any given Al program — capturing a given domain’s
expertise — an RLL provides a powerful toolkit for building a specially tailored representation. Only when
new tools must be built do traditional RLLs falter or fail.

In conclusion, the reasons for wanting to have an RLL are sustained; self-debugging, self-explanation,
and self-modification are greatly enhanced by having a representation of the representation being used.

R A A Ao

Unfortunately, these reasons are countervailed as the expressive demands on the language require escape to
a ‘real’ programming language. The solution — it then seems — must be to make an RLL which is a ‘real’
programming language.
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o8 Chapter A-1
B An ARLO ‘Explanation’
o
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K ()
"‘.':;“ These units are best organized by the My File Of Definition relation.
"‘i’;‘i
A-1.1 Units defined in Arlo: SOURCES; BOOT
e These units are best organized by the Makes Sense For relation.

[Py
Y A-1.1.1 Units with a Makes Sense For slot of Any-Type
T8
::)‘;‘\ The unit Defaulting Slot is defined in the knowledge base Core. This is the prototype for slots which
HAN default their values.
o The unit Generic Slot is defined in the knowledge base Core. This is a prototypical “generic” slot
;-:idf which looks for local slot definitions on each unit.
:::é:g The unit Primitive Slot is defined in the knowledge base Core. This is the simplest prototype slot.
:::::: The unit Prototype is defined in the knowledge base Core. This is a unit’s prototype.
i A-1.1.2 Units with a Makes Sense For slot of Slot-Type
;a.;;t' These units all have PROTOTYPE slots of S1ot.
u:::l : These units are best organized by the Data Type relation.
A
:::E:O Units with a Data Type slot of Function-Type
T These units are best organized by the To Default Value relation.
_ Units with a To Default Value slot of #'DECACHE-FINDER
:Jn:’. To-Decache-Value is a slot which accepts values of type Function Type and makes sense for units of type
h,:: Slot Type. This is a slot’s function for invalidating it’s value on a unit. Its value defaults by the function
e ARLO:DECACHE-FINDER, which:
‘n‘a'!
‘_.;‘? This finds the deaching function for a unit by looking through its prototypes.

- Units with a To Default Value slot of #°’DONT-DEFAULT-SLOT
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ARLO Ken Haase

To-Default-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is the function for computing the value of a slot at need. Its value defaults by the function
ARLO:DONT-DEFAULT-SLOT, which:

Signals an error if called to default a value.

Units with a To Default Value slot of #'FIND-VALUE

Actual-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type
Slot Type. This is a slot’s function for “physically” depositing its value. Its value defaults by the function
ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.
To-Cache-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot’s function for caching its value. Its value defaults by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.
To-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot’s procedure for fetching its value. Its value defaults by the function ARLO:FIND-VALUE,
which:

Look through the prototoypes of a unit for a particular slot.
To-Process-Slot is a slot which accepts values of type Function Type and makes sense for units of type

Slot Type. This is a slot’s function for transforming its description into “print-queue” form. Its value defaults
by the function ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.
To-Put-Value is a slot which accepts values of type Function Type and makes sense for units of type Slot

Type. This is a slot’s procedure for storing a value. Its value defaults by the function ARLO:FIND-VALUE
which:

Look through the prototoypes of a unit for a particular slot.

To-Retract-Value is a sfot which accepts values of type Function Type and makes sense for units of type
Slot Tupe. This is a slots procedure for removing its value. Its value defaults by the function ARLO:FIND-
VALUE, which:

Look through the prototoypes of a unit for a particular slot.

Units with a To Default Value slot of #'TO-GENERATE-SLOT-DESCRIBER

To-Descrabe-Value is a slot which accepts values of type Function Type and makes =ense for units of type
Slot Type. This i= a slot’s function for describing its value. Its value defaults by the function ARLO:TO-
GENERATE-SLOT-DESCRIBER, which:

senerates a function for describing a slot’s valve.
G g

Units with a To Default Value slot of #’'TO-GENERATE-SLOT-PRINTER
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M To-Print-Value is a slot which accepts values of type Function Type and makes sense for units of type .
Slot Type. This is the function for printing the value of this kind of slot. Its value defaults by the function ’
It ARLO:TO-GI' NERATE-SLOT-PRINTER, which: 17
Gets the function for printing a slot’s value. :
'-‘; Units with a To Default Value slot of #'TO-GENERATE-SLOT-READER
:f‘w To-Read-Value is a slot which accepts values of type Function Type and makes sense for units of type A
Slot Type. This is a slot’s function for reading in its value. Its value defaults by the function ARLO:TO-
> GENERATE-SLOT-READER, which:
o Gets the function for reading tn a slot’s value. \'
oY Units with a To Default Value slot of #'TO-GENERATE-TO-VERIFY-TYPE 3
?0 To-Verify-Type is a slot which accepts values of type Function Type and makes sense for units of type a
Slot Type. This is the function which verifies the suitability of a slot’s attachment. Its value defaults by the -
o function ARLO: TO-GENERATE-TO-VERIFY-TYPE, which: o
~ by
4 Compute a slot’s type checker with the Type-Checker coder. -
i - Units not classifiable by To-Default-value g
‘ Actual-Get-Value is a slot which accepts values of type Function Type and makes sense for units of type
N Slot Type. This is a slot’s function for “physically” extracting its value. -
P Units with a Data Type slot of Slot-Type R
k ::‘ Shadov-Slot is a slot which accepts values of type Slot Type and makes sense for units of type Slot Type.
" This is the prototype for all slots which shadow other slots. .
e Units with a Data Type slot of Type-Type
o Data-Type is a slot which accepts values of type Type Tuype and makes sense for units of type Slot Type. This ;
- is a slot’s description of its acceptable values- its range. Its value defaults by the function ARLO:DATA-
’ TYPE-GENERATOR, which: 4
{ Looks through the prototypes of a slot for its data-type ]
LA
! Makes-Sense-For is a slot which accepts values of type Tupe Type and makes sense for units of type Slot
o Tupe. This describes the sorts of units a slot may attach to- its domain. Its value defaults by the function :
X ARLO:MAKES-SENSE-FOR-GENERATOR, which: n
?; Looks through the prototypes of a slot for its attachment type. ;
; §
:: A-1.1.3 Units with a Makes Sense For slot of Unit-Type v
o These units are best organized by the Prototype relation. g
.} \3
pd .
;: Units with a prototype of Generic Slot |
\. The unit Typed Slot is defined in the knowledge base Core. This is the prototype for slots which perform
i ty hecking. ]
. ype checking
Units with a prototype of Defaulting Slot
Y
‘ L]
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L Slot is a slot which accepts values of type Any Type and makes sense for units of type U/nit Type. This is

v the prototype for slots which both default and type check their values.

L'l

J
’\, Units with a prototype of Slot ]
N These units are best organized by the Data Type relation. ;
':.' Units with a Data Type slot of Any-Type

: My-File-0f-Definition is a slot which accepts values of type Any Type and makes sense for units of type i

o Unit Type. This 1s the file in which a unit was defined. Its value defaulis by the function ARLO:GET-TIME, X
’.'"2 which: "

~‘~ *
\,’ Gets the current universal time.

-‘L' My-liame is a slot which accepts values of type Any Type and makes sense for units of type Unit Type.

This is a unit’s name. Its value defaults by the function ARLO:GENERATE-UNIT-NAME, which:

i Generates a unit name. (Never really called?)

::: Shadov-Slot-Slot is a slot which accepts values of type Any Type and makes sense for units of type Unat ,
,.;-: Tupe. This stores the slot referring to ways to find a slot. '
":: Units with a Data Type slot of Function-Type
* Hy-To-Describe-Sel? iz a slot which accepts values of type Function Type and makes sense for units of
] type Unit Type. This is a unit’s function for describing itzelf. Its value defaults by the function ARLO:UNIT-
= DESCRIBER-GENERATOR. which: :

Looks through the prootypes of a unit for a description [function. :

Hy-To-Print-Selt is a slot which accepts values of type Function Type and makes scnse for units of type

¢ U'nat Type. This is a unit’s function for printing itself. Its value defaults by the function ARLO:UNIT-

. PRINTER-GENERATOR, which: J
ﬁsz Looks through the prootypes of a unit for a printer function. R
P Units with a Data Type slot of List-Type o

N High-Level-Definition is a slot which accepts values of type List Type and makes sensze for units of type ¥

Unat Type. This 1z a definition for some function in a high level language. lts value defaults by the function

" ARLO:ASK-USER-FOR-SLOT, which:

:':; Acsks user for a slot on a window that's big enough.

B N Units with a Data Type slot of String-Type
:‘ Description is a slot which accepts values of type String Type and makes zense for unitz of type Unit
o Tuype. Thix 1= a string describing what thiz unit i=. Jt= value default= by the function ARLO:DEFAULT- }
v DESCRIPTION-GENERATOR. which: .
.;. This generates a desemiption ezcuse. b
_“' ly-Creator is a slot which accepts values of type String Tupe and makes zenze fov unitz of type Urat Type. :
1’: This is the uzer who created {actually. compiled) a umit. Tz value defanhi= by the function ARLO:CET- :
N HACKER, which:

P, Returns the full nare of the current user, as a string
o
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"" Units with a Data Type slot of Tise-Type -
-
' My-Time-0f-Creation is a slot which accepts values of type Time Type and makes sense for units of type
" Unat Type. This is the time when a unit was created (as “universal” time)}. Its value defaults by the function iy
10! ARLO:GET-TIME. which: 5
“ “
: Gets the current universal time. "
¢ "
K

A-1.2 Units defined in Arlo: SOURCES; CODERS

]

:: These units are best organized by the Data Type relation. :_

3 A-1.2.1 Units with a Data Type slot of Any-Type M
i st

e )
":l These units all have PROTOTYPE slots of Function-Descriptor. o
’ These units all have MAKES-SENSE-FOR slots of Implemented-Function-Type.

A Errors-Expected is a slot which accepts values of type Any Type and makes sense for units of type

Implemented Function Type. A descriptor for the EXPECTING coder.
From-Unit is a slot which accepts values of type Any Type and makes sense for units of type Implemented

o~

,.l', Function Type. A descriptor for the INHERITS? coder.

& Message-Spec is a slot which accepts values of type Any Type and makes sense for units of type Imple-

" mented Function Type. A descriptor for the ASK-HACKER coder.

. Method-Descriptions is a slot which accepts values of type Any Type and makes sense for units of type

. Implemented Function Type. The ARLO units describing each coder. Its value defaults by the function
ARLO:GENERATE-METHOD-DESCRIPTIONS, which:

A Generates descriptions for each method in a iry-and-try-again functlion.

‘ Possible-Hethods is a slot which accepts values of type Any Type and makes sense for units of type

4 Implemented Function Type. A descriptor for the EXPECTING coder.

:: Slot-To-Inherit-Through is a slot which accepts values of type Any Type and makes sense for units of

:: type Implemented Function Type. A descriptor for the INHERIT-THROUGH coder.

A Slot-To-Search-Through is a slot which accepts values of type Any Type and makes sence for units of
type Implemented Function Type. A descriptor for the INHERITS? coder.

) Slots-To-Combane is a slot which accepts values of type Any Type and makes sense for units of type N

138 Implemented Function Type. A descriptor for the SLOT-COMPOSITION coder. .:'

N Test-Criterion is a slot which accepts values of type Any Type and makes sense for units of type 4

.5y o

;' Implemented Function Type. A descriptor for the TEST coder. )

* - . . 8)

= A-1.2.2 Units not classifiable by Data-Type

!;: These units are best organized by the Prototype relation. :’f

'$ Units with a prototype of Coder :

_'? ASK-HACKER is an ARLO coder. This generate. a question asking function.. The functions it generates :

: are specified by one parameter: Message-Spec . It’s hody is generated by the function GENERATE- ASK- ol
HACKER.
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EXPECTING is an ARLO coder. This defines a try and try again function which expects certain
errors.. The functions it generates are specified by two parameters: Errors-Expected and Possible-l{ethods.
It's body is generated by the function GENERATE-EXPECTING.

INHERIT-THROUGH is an ARLO coder. Thiz defines functions which search for values along some
relation.. The functions it generates are specified by one parameter: Slot-To-Inherit-Through . It's body is
generated by the function GENERATE-INHERIT-THROUGH.

INHERITS” is an ARLO coder. This implements a function for confirming inheritance along some
relation.. The functions it generates are specified by two parameters: From-Unit and Slot-To-Search-Through.
It’s body is generated by the function GENERATE-INHERITS?.

METHODS is an ARLO coder. This builds a try and try again function.. The functions it generates
are specified by one parameter: Possible-Metheds . It’s body is generated by the function GENERATE-
METHODS.

SLOT-COMPOSITION is an ARLO coder. This generates a slot composition function. The functions
it generates are specified by one parameter: Slots-To-Combine . It’s body is generated by the function
GENERATE-SLOT-COMPOSITION.

TEST is an ARLO coder. This defines a complicated conjunction of many predicates.. The func-
tions it generates are specified by one parameter: Test-Criterion . It’s body 1s generated by the function
GENERATE-TEST.

Units with a prototvpe of Hand Coded Function

GENERATE-METHOD-DESCRIPTIO!S is a user defined lisp function which has an argument list of (UNIT IGNORE]),
and is documented a:. “Generates descriptions for each method in a try-and-try-rgain function.”.

A-1.3 Units defined in Arlo: SOURCES; CODING

These units are best organized by the Makes Sense For relation.
A-1.3.1 Units with a Makes Sense For slot of Coded-Function-Type
Coded-By 1= a slot which accepts values of type Cloder Type and makes sense for units of type Coded

Function Type. This iz the unit describing the implementation of this function. Its value defaults by the
function ARLO:DONT-DEFAULT-SLOT. which:

Swgnals an error of called to default a value.

Internal-ame is a <lot which accepts values of type Symbol Type and makes sense for umits of type
('oded Function Type. This 1= the unit describing the implementation of this function. Its value defaults by
the function ARLO:GENERATE-INTERNAL-FUNCTION-NAME, which:

This conses an ugly internal function name for a description.

A-1.3.2 Units with a Makes Sense For slot of Coder-Type

Coder-Slot is a slot which acceptz values of type Any Tupe and makes sense for units of type Coder
Tupe. This iz the prototype for all partz of coder descriptions. Tt< valoe defaultz by the fonetion ARLO:ASK-
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USER-FOR-SLOT, which:
Asks user for a slot on a window that’s big enough.

Description-Parameters is a slot which accepts values of type List Type and makes sense for units of

;':“ type Coder Type. These are the specifications from which the function is generated.
»:‘: Documentor is a slot which accepts values of type Function Type and makes sense for units of type Coder
Tl Tupe. This is the function which documents this sort of function.
A Implementor is a slot which accepts values of type Function Type and makes sense for units of type Cloder
, '-‘:“.' Type. This is the function which codes up this sort of function.
f"{ ‘lame-Generator is a slot which accepts values of type Function Type and makes sense for units of type
“ Coder Type. This is the function which names this sort of function. Its value defaults by the function
Y ARLO:TO-DEFAULT-NAME-GENERATOR, which:
This generates a function which generates function name generators.

state8
" Y A-1.3.3 Units with a Makes Sense For slot of @T|[Function-Type]
K’
A Function-Debugging-Info is a slot which accepts values of type List Type and makes sense for units of
‘ type Function Type. This is random debugging information for a function. (Generated by the compiler) Its

. value defaults by the function ARLO:TO-DEFAULT-FUNCTION-DEBUGGING-INFO, which:
3_\' f This finds the internal debugging information for a function.
::"_{ Function-Max-Args is a slot which accepts values of type Integer Type and makes sense for units of type
-{:' Function Type. This is the maximum number of arguments a function may take. Its value defauits by the

- function ARLO:TO-DEFAULT-MAX-ARGS, which:

This returns the mazimnum number of args a function may take.

: _": Function-Hin-Args is a slot which accepts values of type Integer Type and makes sense for units of type
&::Q:_ Function Type. This is the minimum number of args a function requires. Its value defaults by the function
f.i\' ARLO:TO-DEFAULT-MIN-ARGS, which:
N\
DA Thas returns the minimum number of args a function takes.
1:. . “acros-Used is a slot which accepts values of type List Type and makes sense for units of type Function
¢, [ . . . R T
R ‘,'; Tupe. This is the macros used in defining a function. Its value defaults by the function ARLO:TO-DEFAULT-
e MACROS-USED, which:
B ,“'
N -,: Thas determines what macros were expanded for a given function.
"":’ agic-Argument-Descriptor is a slot which accepts values of type Integer Type and makes sense for units
o of type Function Type. This is a magic number describing a functions arguments (generated by the compiler)
- Its value defaults by the function ARLO:TO-DEFAULT-MAGIC-ARGUMENT-DESCRIPTOR, which:
», ';: This returns a magical argument descriptor for a function.
chRs . .
ey A-1.3.4 Units with a Makes Sense For slot of Implemented-Function-Type
e g
. These unitz are hest organized by the Prototype relation.
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ARLO Ken Haase

Units with a prototype of Slot

Function-Descriptor is a slot which accepts values of type Any Type and makes sense for units of type
Implemented Function Type. This the prototype for attributes describing functions.

Units with a prototype of Function Descriptor
These units are best organized by the Data Type relation.

Units with a Data Type slot of Lisp-Function-Type

Functional-Value is a slot which accepts values of type Lisp Function Type and makes sense for units of
type Implemented Function Type. This is a version of the function acceptable to APPLY. Its value defaults
by the function ARLO:TO-DEFAULT-FUNCTIONAL-VALUE, which:

Gets the functional value - compiled or interpreted - of a function.

Units with a Data Type slot of List-Type

Arglist is a slot which accepts values of type List Type and makes sense for units of type Implemented
Function Type. This is the argument list for a function. Its value defaults by the function ARLO:TO-
DEFAULT-ARGLIST, which:

Defaults the arglist of a function.

Lambda-Body is a slot which accepts values of type List Type and makes sense for units of type Implemented
Function Type. This is the body of the function. Its value defaults by the function ARLO:TO-DEFAULT-
LAMBDA-BODY, which:

Finds or generates a lambda body for a function.

Lambda-Definition is a slot which accepts values of type List Type and makes sense for units of type
Implemented Function Type. This is the lambda definition of a function. Its value defaults by the function
ARLO:TO-DEFAULT-LAMBDA-DEFINITION, which:

This tries to compute a lambda definition for a slot.

Units with a Data Type slot of String-Type

Documentation is a slot which accepts values of type String Tuype and makes sense for units of type
Implemented Function Type. This is the documentation for a function. Its value defaults by the function
ARLO:TO-DEFAULT-DOCUMENTATION, which:

Finds the documentation for a function.

Units with a Data Type slot of Subr-Type

Compiled-Definition is a slot which accepts values of type Subr Type and makes sense for units of type
Implemented Function Type. This is the compiled definition of a function. Its value defaults by the function
ARLO:TO-DEFAULT-COMPILED-DEFINITION, which:

Compales the definition of a funclion.

Units with a Data Type slot of valid-Function-liame-Type

Function-lame is a slot which accepts values of type Valid Function Name Type and makes sense for

units of type Implemented Function Type. This is the function spec for the function described by a unit. Its
value defaults by the function ARLO:TO-DEFAULT-FUNCTION-NAME. which:

Computes a function name by looking on a coder slot.
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ARLO Ken Haase

A-1.3.5 Units not classifiable by Makes-Sense-For

The unit Coder is defined in the knowledge base Core. This is the prototype for all ARLO’s automatic
coders.

The unit Hand Coded Function is defined in the knowledge base Core. This is the prototype for
functions defined by DEFINE.

The unit Implemented Function is defined in the knowledge base Core. This is the prototype for
implemented LISP function descriptions.

A-1.4 Units defined in Arlo: SOURCES; LISP

These units all have PROTOTYPE slots of Hand-Coded-Function. FIND-VALUE is a user defined lisp
function which has an argument list of (UNIT SLOT), and is documented as: “Look through the prototoypes
of a unit for a particular slot.”.

GENERATE- IlITERNAL-FUNCTION-HAME is a user defined lisp function which has an argument list of (UNIT
IGNORE), and is documented as: “This conses an ugly internal function name for a description.”.

MAKES-SENSE-FOR-GEHERATOR is a user defined lisp function which has an argument list of (UNIT SLOT),
and is documented as: “Looks through the prototypes of a slot for its attachment type.”.

TO-DEFAULT-COMPILED-DEFIUITION is a.user defined lisp function which has an argument list of (UNIT
IGNORE]), and is documented as: “Compiles the definition of a function.”.

TO-DEFAULT-DOCUMENTATION is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Finds the documentation for ¢ function.”.

TO-DEFAULT-FUNCTION-IIAME is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Computes a function name by looking on a coder slot.”.

TO-DEFAULT-FUIICTIONAL-VALUE is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: “Gets the functional value - compiled or interpreted - of a function.”.

TO-DEFAULT-LAMBDA-BODY is a user defined lisp function which has an argument list of (UNIT IGNORE),
and is documented as: “Finds or generates a lambda body for a function.”.

TO-DEFAULT-LAMBDA-DEFIUITION is a user defined lisp function which has an argument list of (UNIT
IGNORE), and is documented as: “This tries to compute a lambda definition for a slot.”.

TO-GEIERATE-TO-VERIFY-TYPE is a user defined lisp function which has an argument list of (SLOT 1G-
NORE), and is documented as: “Compute a slot’s type checker with the Type-Checker coder.”.

UITT-PRINITER-GEHERATOR is a user defined lisp function which has an argument list of (UNIT SLOT), and
is documented as: “Looks through the prootypes of a unit for a printer function.”.

A-1.5 Units defined in Arlo: SOURCES; TYPES

These units are best organized by the Prototype relation.

A-1.5.1 Units without any prototype.

The unit Type is defined in the knowledge base Core. This is the prototype for all types. It accepts

anything.
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L A-1.5.2 Units with a prototype of Coder

.‘i;c' TYPE-CHECKER is an ARLO coder. Generates a type checking function for a slot.. The func-

;,:&: tions it generates are specified by one parameter: Relevant-Slot . It’s body is generated by the function

;,“ GENERATE-TYPE-CHECKER.

) - . . . .

’”3 A-1.5.3 Units with a prototype of Function Descriptor b

Relevant-Slot iz a slot which accepts values of type Any Type and makes sense for units of type Imple-

.
.‘ mented Function Type. A descriptor for the TYPE-CHECKER coder.
A-1.5.4 Units with a prototype of Hand Coded Function

= s~

ol
'f TO-GEIERATE-SLOT-DESCRIBER is a user defined lisp function which has an argument list of (UNIT IG-
NORE), and is documented as: “Generates a function for describing a slot’s value.”.

";:' TO-GENERATE-SLOT-PRILTER is a user defined lisp function which has an argument list of (UNIT IGNORE), _
"l . and is documented as: “Gels the function for printing a slot’s value.”. ;
A TO-GEI'ERATE-SLOT-READER is a user defined lisp function which has an argument list of (UNIT IGNORE), :
K and is documented as: “Gets the function for reading in a slot’s value.”.
' TO-GENERATE-TYPE-CHECKER is a user defined lisp function which has an argument list of (UNIT IGNORE),
" and is documented as: “Generates the type checking function for a type.”.
el . .
«.; A-1.5.5 Units with a prototype of Slot \
‘:: These units are best organized by the Data Type relation.
i
b Units with a Data Type slot of Function-Type
& Function-To-Describe is a slot which accepts values of type Function Type and makes sense for units of type
is % Type Type. This is the function for describing a value of a particular type. Its value defaults by the function
X INHERIT-THROUGH-GENERALIZATION, which:
3 Searches through the CORE:GENERALIZATION slots of a unit for a value.
1)

! Function-To-Print is a slot which accepts values of type Function Type and makes sense for units of type

' Tupe Type. This is the function for printing a value of a particular type. Its value defaults by the function
; ¥ INHERIT-THROVGH-GENERALIZATION, which:
) ﬁ Searches through the CORE:GENERALIZATION slots of a unit for a value. s
’_.. Function-To-Read is a slot which accepts values of type Function Type and makes sense for units of type 1
i Tupe Tupe. This is the function for reading a value of a particular type. Its value defaults by the function
o INHERIT-THROUGH-GENERALIZATION, which:

- Searches through the CORE:GENERALIZATION slots of a unit for a value. !
_,.:: Specatication is a slot which accepts values of type Function Type and makes sense for units of type Type :
<. Tupe. This iz the function which specializes this type. Its value defaults by the function ARLO:QUESTION- )

. p

S 2, which:

= Azk the user a question by:

i }
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(FORMAT QUERY-I10
“ @ What predicate specifies a from af”
UNIT
(GET-VALUE UNIT #>GENERALIZATION))

Type-Checking-Functionis a slot which accepts values of type Function Type and makes sense for units of

type Type Type. This is the predicate for a type. Its value defaults by the function ARLO:TO-GENERATE-
TYPE-CHECKER, which:

Generates the type checking function for a type.

Units with a Data Type slot of Type-Type

Generalization is a slot which accepts values of type Type Type and makes sense for units of type Type Type.

This is the type upon which a given type is built. Its value defaults by the function ARLO:QUESTION-1,
which:

Ask the user a question by:
(FORMAT QUERY-IO “ &#What 1s a a specialization of¢” UNIT)

My-Specific-Type is a slot which accepts values of type Type Type and makes sense for units of type
Unat Type. This is how to tell if a unit inherits from this unit.

A-1.5.6 Units with a prototype of Type

These units are best organized by the Generalization relation.
Types without any generalizations.

Any-Type specifies the class of LISP objects which satisfy the predicate ANYTHINGP (documented as “A
unparticular type predicate.”). This is the top of the type hierarchy.

Types which are specializations of Any Type

Function-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate CALLABLEP (documented as “Determines if an object is etther a function or a function-
describing unit”). This is a type satisifed by any callable object (including function descriptions).

Integer-Type specifies a class of lisp objects which are classified by Any-Type and which additionally
satisfy the predicate FIXP. This is a type requiring a LISP integer. {a fixnum or a bignum)

List-Type specifi>s a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate LIST-OR-NIL-P (documented as “A predicate which accepts conses and NIL.”). This is a type
satisfied by any list (including NIL).

Pathname-Type specifies a class of lisp objects which are classified by Any-Type and which additionally
satisfy the predicate PATHNAMEP. This is a type which is satisfied by any pathname

String-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate STRINGP. This is a type satisifed by any string.

Symbol -Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate SYMBOLP. This i a 1y pe -atisthed by any LISP symbol.
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ARLO Ken Haase

Unit-Type specifies a class of lisp objects which are classified by Any-Type and which additionally satisfy
the predicate UNITP (documented as “Function determining if something 1s a unit- used by TYPEP”). This
is a type describing any ARLO unit.

Types which are specializations of Function Type

Implemented-Function-Type specifies a class of lisp objects which are classified by Function-Type and which
additionally satisfy the predicate IMPLEMENTED-FUNCTION?. This is a type satisifed by any lisp func-

tion.

Lisp-Function-Type specifies a class of lisp objects which are classified by Function-Type and which
additionally satisfy the predicate FUNCTIONP. This is a type satisifed by any lisp function.

Subr-Type specifies a class of lisp objects which are classified by Function-Type and which additionally
satisfy the predicate SUBRP. This is a type satisfied by any LISP callable object (i.e. APPLIcable)

Valid-Function-liame-Type specifies a class of lisp objects which are classified by Function-Type and
which additionally satisfy the predicate VALIDATE-FUNCTION-SPEC. This is a type satisifed by any lisp

function spec.

Types which are specializations of Implemented Function Type

Coded-Function-Type specifies a class of lisp objects which are classified by Implemented-Function-Type and
which additionally satisfy the predicate PROTOTYPE-OF-CODED-FUNCTION? (documented as “Checks
to see 1f a unit inherts from CORE:CODED-FUNCTION via CORE:PROTOTYPE."). This is a type
satisifed by any lisp function.

Types which are specializations of Integer Type

Time-Type specifies a class of lisp objects which are classified by Integer-Type and which additionally satisfy
the predicate FIXP. This is a type requiring an integer indicating seconds past the turn of the century.

Types which are specializations of Unit Type
Coder-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate CODER?. This is a type describing any ARLO slot.

Slot-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally <atisfy
the predicate SLOT? (documented as “Determines of a unat 1 a slot- (r.e. has PRIMITIVE-SLOT as a
prototype)”). This is a type describing any ARLO slot.

Type-Type specifies a class of lisp objects which are classified by Unit-Type and which additionally satisfy
the predicate IS-IT-A-TYPE-P (documented as “Determines 1f something 1s a unit inheriting from TYPE").
This iz a type which is satisified by anv type describing ARLO unit.

A-1.6 Units defined in Arlo: SOURCES; WHISTLES

(PROPERTY ARLO-UINIT [iAlED-STRUCTURE-I'VOKE) i= a user defined lisp function which has au argument tist
of (OP UNIT &REST MISC-ARGS). and is documented as: “Data wirected pretty printing and describing

Jor unats.”.
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g ARLO Ken Haase
ASK-USER-FOR-SLOT is a user defined lisp function which has an argument list of (IN-UNIT A-SLOT
- &OPTIONAL (STREAM QUERY-10) &REST FORMAT-ARGS), and is documented as: “Asks user for a

slot on a window that’s big enough.”.
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s Chapter A-2
Ay An Explanation ‘Explanation’

: These units are best organized by the My File Of Definition relation.
v A-2.1 Units defined in Arlo: AI; DOCUMENT

1! These units are best organized by the Prototype relation.

1
:: A-2.1.1 Units with a prototype of Explanation Slot

¥

l,_l&,: Positional-Assumptions is a slot which accepts values of type Any Type and makes sense for units of
gl type Ezplanation Type. These are The slots distinguished by this explanations superiors. Its value defaults
by the function ARLO:TO-DEFAULT-POSITIONAL-ASSUMPTIONS, which:

- Adds a units superiors primary division to its posttional assumptions.

Scribe-Documentor is a slot which accepts values of type Function Type and makes sense for units of
W type Ezplanation Type. This is the function SCRIBE documentation fo- an explanation. lts value defaults
A5 by the function ARLO:FIND-VALUE, which:

Look through the prototoypes of a unit for a particular slot.

f‘}: Scribe-Explanation-Title is a slot which accepts values of type Any Type and makes sense for units of
"Q':. type Ezplanation Type. This is the section title SCRIBE should use for this explanation. Its value defaults
by the function ARLO:GENERATE-SCRIBE-EXPLANATION-TITLE, which:

Attempts to generate an appropriate scribe-style heading for a section.
’ui: A-2.1.2 Units with a prototype of Hand Coded Function

::'::l DOCUMENT-FILE is a user defined lisp function which has an argument list of (PATHNAME KB TITLE),
;’ and is documented as: “Documents all the units in a given KB comang from a given file.”.

bl DOIIT-DEFAULT-SLOT is a user defined lisp function which has an argument list of (UNIT SLOT), and is
_ documented as: “Siynals an crror of called to difault a value.”
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G EXPLANATION-PRECEDENCE is a user defined lisp function which has an argument list of (EXPLANATION1
EXPLANATION2). and is documented ‘as: “Establishes an order on a hierarchy of ezplanations.”.

S ‘ N . . . .

:::: K] GEHERATE-SCRIBE-DOCUMEITATION - FOR-COMPLEX-EXPLANATION is a user defined lisp function which has an

::g: argument list of (EXPLANATION STREAM), and is documented as: “Produces scribe docurncntation for

; an ezplanation of a set of units.”.

¥ . . . .

f*:‘.l: GEERATE-SCRIBE-DOCUMENTATION-FOR-UIIIT-EXPLANATION is a user defined lisp function which has an argu-
ment list of (EXPLANATION STREAM), and is documented as: “Documents a unit by looking for a scribe

l;; i documentor on its prototypes.”.

)
ket il GE!IERATE-SCRIBE-EXPLANATION-TITLE is a user defined lisp function which has an argument list of (EX-
§ -l': PLANATION IGNORE]), and is documented as: “Attempts to generate an appropriate scribe-style heading
‘f ‘ for a section.”.

IHHERITING? is a user defined lisp function which has an argument list of (SUPER UNIT BY-RELATION),
and is documented as: “Determanes if some unit snherits another by some relation.”.
) PRINT-UNIT-FOR-SCRIBE is a user defined lisp function which has an argument list of (UNIT STREAM),
‘h; and is documented as: “Prints a unit for SCRIBE, being cute about knowledge bases.”.

w5 RUY-SCRIBE-DOCU-E!TOR is a user defined lisp function which has an argument list of (ON-EXPLANATION
e TO-BUFFER), and is documented as: “Runs the documentor on some explanation.”.

_ SAY-SLOT-VALUE is a user defined lisp function which has an argument list of (UNIT SLOT STREAM),
5 ‘ and is documented as: “Produces a psuedo-english description of some slot value.”.
KL SCRIBE-ALPHABETIZE- EXPLANATIONS is a user defined lisp function which has an argument list of (EXPLA-
‘(“'S NATIONS), and is documented as: “Sorts e set of ezplanations alphabetically by SCRIBE-EXPLANATION-
e TITLE”.

SCRIBE-DOCUMELT- EXPLAIATION is a user defined lisp function which has an argument list of (EXPLANA.

7:_',' TION TO-STREAM), and is documented as: “Generates scribe documentation for an ezplanation.”.
"‘. . SCRIBE-DOCULE! T- PERSON-EXPLAUVATION is a user defined lisp function which has an argument list of (EX-
\ _“: PLANATION STREAM), and is documented as: “Produces SCRIBE documentation for a person descrip-
f" q_; tion.”,

’ SCRIBE-DOCU: E!T-RAIiDQH-COMPLEX-EXPLAIIATION is a user defined lisp function which has an argument list
) of {EXPLANATION STREAM), and is documented as: “Documents an indistinctive collection of units.”.
;:::;':: SCRIBE-DOCULE!ITOR-FOR-CODED-FULICTIONS is a user defined lisp function which has an argument list of
:.:Q:;:t {EXPLANATION STREAM), and is documented as: “Produces SCRIBE documentation for an automat:-
::Q:':t cally coded function.”

i':’:‘i‘ SCRIBE-DOCUIElITOR-FOR-CODERS is a user defined lisp function which has an argument list of (EXPLA-

e NATION STREAM), and is documented as: “Produces SCRIBE documentation for an ARLO coder.”.

: * ; SCRIBE-DOCUME!IITOR-FOR-RAIIDOM-UNIT-EXPLAIATIOLS is a user defined lisp function which has an argument

«.}Q} hst of (EXPLANATION STREAM), and iz documented as: “Generates a scribe ezplanation for a unat :
‘;::D: ezplanation.”. .
@:i:?n SCRIBE-DOCULE!TOR-FOR- SLOT-EXPLAATIOIS is a user defined lisp function which has an argument list of

(EXPLANATION STREAM). and iz documented as: “Generates a scribe explanation for some slot.”.
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l‘. SCRIBE-DOCUME.ITOR-FOR-TYPE-EXPLANATIONS is a user defined lisp function which has an argument list of ‘
) {(EXPLANATION STREAM). and is documented as: “Generates a scribe ezplanation for some slot.”. s
-: SCRIBE-DOCUIE!!TOR-FOR-USER-FUICTIO!S is a user defined lisp function which has an argument list of -
Y (EXPLANATION STREAM), and is documented as: “Produces SCRIBE documentation for an ezxplanation -
‘. of a user function.”. :
y SECTIONIZE-BY-HIERARCHICAL-SLOT is a user defined lisp function which has an argument list of (EXPLA- <
" NATION STREAM), and iz documented as: “Documents a collection of units organized by a hierarchical
@ relation.”. -‘—‘
4 SECTIDIIIZE-FILE-OF-DEFIIITION-SLOT is a user defined lisp function which has an argument list of (EX- :t
33 PLANATION STREAM), and is documented as: “Sets sectionization determined by file of definition.”. ]
"': SECTIONIZE-GEIERALIZATION-SLOT is a user defined lisp function which has an argument list of (EXPLA- .
K NATION STREAM), and is documented as: “Sectionizes based on the GENERALIZATION slot.”.
SECTIONIZE-PROTOTYPE-SLOT is a user defined lisp function which has an argument list of (EXPLANA-
b TION STREAM), and is documented as: “Sectionizes based on the PROTOTYPE slot.”.

L

"

.

SECTIONIZE-SUPERVISOR-SLOT is a user defined lisp function which has an argument list of (EXPLANA-

A;- TION STREAM), and is documented as: “Sectionizes based on the INQUIR:SUPERVISOR slot.”. :‘
. . . . N
' TO-DEFAULT-MY-TO-SCRIBE-DOCUMENT-SELF is a user defined lisp function which has an argument list of .
(UNIT SLOT), and is documented as: “Looks on ones prototypes for a function and otherwise returns a -
g default.”. -
“ TO-DEFAULT-POSITIOIAL-ASSULIPTIONS is a user defined Hsp function which has an argument list of (EX- ]
- PLANATION IGNORE]), and is documented as: “Adds a units superiors primary division to 1ts positional :_
o assumptions.”. K,
: . . . . . <
$ TO-DEFAULT-TO-SECTIONIZE-BY is a user defined lisp function which has an argument list of (UNIT SLOT), o
. and is documented as: “Looks on ones prototypes for a function and otherwise returns a default.”. -~
A . . -
N A-2.1.3 Units with a prototype of Slot e
. N
t ily-To-Scribe-Document-Self is a slot which accepts values of type Function Type and makes sense for o
. units of type Unit Type. This is the function for writing SCRIBE documentation for a unit. Its value defaults
by the function ARLO:TO-DEFAULT-MY-TO-SCRIBE-DOCUMENT-SELF, which: N
u‘v Looks on ones prototypes for a function and otherwise returns a default. :
. i
. To-Sectionize-By is a slot which accepts values of type Function Type and makes sense for units of type '«
. Siot Type. This is the function for sectionizing a description focussed on this slot. Its value defaults by the ';
t' function ARLO: TO-DEFAULT-TO-SECTIONIZE-BY, which: :i,
o) oL}
Looks on ones prototypes for a function and otherwise returns a default. _
| To-Speak-Value is a slot which accepts values of type Function Type and makes sense for units of type :
b~ Slot Type. This describes hiow to say this slot in English (sort of). ha'
‘T
S A-2.2 Units defined in Arlo: AI: EXPLAIN :
iy ¥
These units are hest organized hy the Prototype relation. y
A 81 :.
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b, A-2.2.1 Units without any prototype.

o The unit Explanation is defined in the knowledge base Explain. This is the prototypical explanation.
hAS
-.‘\ A-2.2.2 Units with a prototype of Explanation Slot

*
B~
N:: Explanation-Kb is a slot which accepts values of type Any Type and makes sense for units of type
> Ezplanation Type. This is the knowledge base in which this explanation is consed up. Its value defaults by
the function ARLO:GET-ORIGINAL-KB, which:

Eztracts the knowledge base a unit was originally 1n.

Explanation-Title is a slot which accepts values of type String Type and makes sense for units of type
Ezplanation Type. This is a string describing this explanation.

il adend SN Al

4 Relevant-Slots is a slot which accepts values of type Any Type and makes sense for units of type

o
Ezplanation Type. This is a list of the slots relevant to this explanation. Its value defaults by the function
. INHERIT-THROUGH-SUPER-EXPLANATION, which:
At .
: 0 Searches through the CORE:EXPLAIN:SUPER-EXPLANATION slots of a unit for a value.
: 'J"h Super-Explanation is a slot which accepts values of type Any Type and makes sense for units of type
.. Ezplanation Type. Thisz is the explanation this explanation is a component of.
A-2.2.3 Units with a prototype of Explanation
)- 4
\ 5: The unit Unit Explanation is defined in the knowledge base Explain. This is the prototypical expla-

> nation of an individual unit.

" "
_'-ﬁ\ The unit Unit Set Explanation is defined in the knowledge base Explain. This is the prototypical
' 03 explanation of a set of units.
> A-2.2.4 Units with a prototype of Hand Coded Function
o
3 ._.:: COMPUTE-CHUNK-SIZE is a user defined lisp function which has an argument list of (PARTITION}, and is
J:i' documented as: “Computes the average size of classtfied chunks 1n this partition.”.

COUSTRUCT-EXPLALATIO! is a user defined lisp function which has an argument list of (TITLE SYMBOLIC-
DIVISION IN-EXPLANATION UNITS STRUCTURE), and iz documented as: “Constructs an ezplanation

for a set of unats.”.

>,

e
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]

::-\.' EXTE:D-PARTITIO! i a user defined lisp function which has an argument list of (PARTITION ELEMENT
i L]
)3'". GROUP), and is documented as: “This adds an element - and ils associated group - to a partition.”.
ool . . . . .
» EXTRACT-SII'PLEST-PARTITIO: is a user defined lisp function which has an argument list of (PARTITIONS),
0 ] p :
b and iz dJocumented as: “Selects the partition with the largest ‘chunks’ from a lList of partitions.”.
Ty GE{’ERATE-EYCUSES is a user defined lisp function which has an argument list of {EXPLANATION), and
: .: 1s documented as: “Generates an explanation for the ‘misfits’ of an explanation.”
:::':: GE.ERATE-SET-PARTITIONS i a user defined lisp function which has an argnment list of (FOR-EXPLANATION),
v .
;, ) and is documented as: “C'omputes or reduces (from ils super-explanation) the partitions for an explanation.”.
92.:: GE!'ERATE- SUB-EXPLAIIATIONS is a user defined lisp function which has an argument list of (EXPLANA-
TION). and iz documented az: “Generates sub erplanations from the partition of an crplanation.”.
-
."
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Lo o GENERATE-UNIT-EXPLANATION is a user defined lisp function which has an argument st of (UNIT SUPER- !
’ EXPLANATION), and is documented as: “This generates an ezplanation object for a particular unit.”.
W GET-ORIGIUAL-KB is a user defined lisp function which has an argumeunt list of (UNIT IGNORE]}, and is
> documented as: “Extracts the knowledge base a unit was originally in.” ‘
'.:- PARTITIOL~UNITS is a user defined lisp function which has an argument list of (UNITS BY-SLOT), and )
t.q 15 documented as: “This takes some units and relurns the partiron defined over them by some slot.”. .
REDUCE-PARTITIO! is a user defined lisp function which has an argument list of (PARTITION OVER-
,f.‘""' UNITS). and is documented as: “This takes the subset of a partition determined by some set of units.”. 1
:::!‘ REDUCE-PARTITIO!I-SET iz a user defined lisp function which has au arguinent list of (PARTITION-SET !
:::. OVER-UNITS OVER-SLOTS), and is documented as: “This takes a et of partitions and reduces each one.”. i
::‘:’ TO-DEFAULT-SET-PARTITIONS is a user defined lisp function which has an argument list of (FOR-EXPLANATION i
- IGNORE), and is documented as: “Computes or reduces (from its super-ezplanation) the partitions for an -
, ezplanation.”.
‘.ﬁ. TO-DEFAULT-SUB-DIVISIONS is a user defined lisp function which has an argument list of (EXPLANATION 1
: IGNORE), and is documented as: “Selects the partition with the largest ‘chunks’ from a list of partitions.”. :
oo TO-DEFAULT-SUB-EXPLAIATIO!S is a user defined lisp function which haz an argument list of (EXPLANA- :
" TION IGNORE]), and is documented as: “Generates sub explanations from the partition of an ezxplanation.”. '
iy TO-DEFAULT-UIEXPLAILED-ULITS is a user defined lisp function which has an argument list of (EXPLA-
y; NATION IGNORE), and is documented as: “Generates an explanation for the ‘misfits’ of an ezplanation.”.
“\ A-2.2.5 Units with a prototype of Slot )
.’ Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type .
Ezplanation Type. This is the prototypical slot referring to explanations.
N To-Partition-By is a slot which accepts values of type Any Type and makes sense for units of type p
g Slot Type. This tells how to partition by a particular slot. Its value defaults by the function INHERIT- t
h :‘, THROUGH-PROTOTYPE, which:
. Searches through the CCORE:PROTOTYPE slots of a unit for a value. '
_‘ Unit-Explanation-Slot is a slot which accepts values of type Any Type and makes sense for units of type
N Unit Explanation Type. This is the prototypical slot referring to unit explanations. \
;'( Unit-Set-Explanation-Slot iz a slot which accepts values of type Any Tupe and makes sense for units of
K. type Unit Set Ezplanation Tupe. This is the prototypical slot referring to unit set explanations. X
:.» a. A-2.2.6 Units with a prototype of Type '
£ Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which addition-
:3 ally satisfy the predicate FROTOTYPE-OF-EXPLAIATIO0N? (documented as “Checks to see if a unit inherits from
e CORE:EXPLAIN:EXPLANATION vin CORE:PROTOTYPE."). Thhs iz a type satisifed by units inheriting
:",- {via the Prototype relation) from the unit Explanation.
b" Unit-Explanation-Type specifiex a class of LISP objects which are classified by Unit-Type and which ad- d
ditionally =atizfy the predicate PROTOTYPE-OF-U:' IT-EXPLAUATION? (documented as “Cheeks fo coe of a vt i
o
5 ,
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t herits from CORE:EXPLAIN:UNIT-EXPLANATION via CORE:PROTOTYPE.”). This is a type satisifed ry
R by units inheriting (via the Prototype relation) from the unit U'nit Explanation. Y
K Unit-Set-Explanation-Type specifies a class of LISP objects which are classified by Unit-Type and which o
> additionally satisfy the predicate PROTOTYPE-OF-UIIT-SET-EXPLAIATION? {documented as “Checks to see 1f a :
| unat inherits from CORE:EXPLAIN:UNIT-SET-EXPLANATION via (CORE:PROTOTYPE.”). This is a z
' type satisifed by units inheriting (via the Prototype relation) from the unit Unit Set Explanation. oo,
, A-2.2.7 Units with a prototype of Unit Explanation Slot Z,
1 3
. Unit-To-Explain is a slot which accepts values of type Any Type and makes sense for units of type Unat )
2 Ezplanation Type. This is the individual unit this explanation is about. o
] A-2.2.8 Units with a prototype of Unit Set Explanation Slot L
These units all have MAKES-SENSE-FOR slots of Unit-Set-Explanation-Type. M
4 - . A
)y These units are best organized by the Data Type relation. <.
RS
N )
Units with a Data Type slot of Any-Type -0
AN
) Sub-Explanations is a slot which accepts values of type Any Type and makes sense for units of type Unit Set >
Y Ezplanation Type. These are the explanations which are component to this explanation. lts value defaults
y by the function ARLO:TO-DEFAULT-SUB-EXPLANATIONS, which: -
) Generates sub explanations from the partition of an cxplanation. /\:
4 o
w Symbolic-Division is a slot which accepts values of type Any Type and makes sense for units of type ‘-
X Unat Set Ezplanation Type. This is a symbolic description of the focus of this explanation. e
’ Unexplained-Units is a slot which accepts values of type Any Type and makes sense for units of type
Unit Set Ezplanation Type. This is an explanation of the units not covered in this explanation. Its value e
. defaults by the function ARLO:TO-DEFAULT-UNEXPLAINED-UNITS, which: ¥~
5 Generates an explanation for the ‘misfits’ of an explanation. '{
9 e
‘. Units with a Data Type slot of Integer-Type s
Section-Size is a slot which accepts values of type Integer Type and makes senze for units of type Unat Set -
Ezplanation Type. This is the threshold when explanation sectionization iz attempted. F‘
. h- g
K Units with a Data Type slot of List-Type N 4
K Relevant-Units is a slot which accepts values of type List Type and makes sense for units of type Unit Set Y,
“" I . - - . : 'ls
o Ezrplanation Type. This ts a list of the units this explanation refers to. -
.
. Set-Partitions is a slot which accepts values of type List Type and makes sense for units of type Unat -
Wy Set Ezplanation Type. This iz a list of the possible partitions of this set of units. Its value defaults by the :.
- function ARLO:TO-DEFAULT-SET-PARTITIONS, which: N
L] WY
: Cormputes or reduces (from its super-crplanation) the partitions for an erplanation. :~;.
Structural-Slots iz a =lot which accepts values of type List Tupe and makes sense for units of type {'nu -
' Set Ezplanation Type. Thiz is a list of the slotz which may sectionize thi= explanation. .
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A Sub-Divisions is a slot which accepts values of type List Type and makes sense for units of type I'nit Set
Ezplanation Type. This is the most relevant partition of the set of units. Its value defaults by the function

ARLO:TO-DEFAULT-SUB-DIVISIONS, which:

L
G Selects the partition with the largest “chunks’ from a hist of partitions.

A-2.3 Units defined in Arlo: SOURCES: LISP

" DECACHE-FIUDER is a user defined lisp function which has an argument list of (UNIT SLOT), and is
\\"" documented as: “This finds the deaching function for a unit by looking through 1ts prutotypes.”.
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